Difference between revisions of "2014 USAMO Problems/Problem 6"
(→Solution) |
(→Problem) |
||
Line 2: | Line 2: | ||
Prove that there is a constant <math>c>0</math> with the following property: If <math>a, b, n</math> are positive integers such that <math>\gcd(a+i, b+j)>1</math> for all <math>i, j\in\{0, 1, \ldots n\}</math>, then<cmath>\min\{a, b\}>c^n\cdot n^{\frac{n}{2}}.</cmath> | Prove that there is a constant <math>c>0</math> with the following property: If <math>a, b, n</math> are positive integers such that <math>\gcd(a+i, b+j)>1</math> for all <math>i, j\in\{0, 1, \ldots n\}</math>, then<cmath>\min\{a, b\}>c^n\cdot n^{\frac{n}{2}}.</cmath> | ||
− | The following solution is due to v_Enhance | + | ==Solution== |
+ | The following solution is due to [b]v_Enhance[/b] | ||
Let <math>N = n+1</math> and assume <math>N</math> is (very) large. We construct an <math>N \times N</math> with cells <math>(i,j)</math> where <math>0 \le i, j \le n</math> and in each cell place a prime <math>p</math> dividing <math>\gcd (a+i, b+j)</math>. | Let <math>N = n+1</math> and assume <math>N</math> is (very) large. We construct an <math>N \times N</math> with cells <math>(i,j)</math> where <math>0 \le i, j \le n</math> and in each cell place a prime <math>p</math> dividing <math>\gcd (a+i, b+j)</math>. | ||
Revision as of 00:34, 9 April 2016
Problem
Prove that there is a constant with the following property: If
are positive integers such that
for all
, then
Solution
The following solution is due to [b]v_Enhance[/b]
Let and assume
is (very) large. We construct an
with cells
where
and in each cell place a prime
dividing
.
The central claim is at least of the primes in this table exceed
. We count the maximum number of squares they could occupy:
\[
\sum_p \left\lceil \frac{N}{p} \right\rceil^2
\le \sum_p \left( \frac Np + 1 \right)^2 \\
= N^2 \sum_p \frac{1}{p^2} + 2N \sum_p \frac1p + \sum_p 1.
\] Here the summation runs over primes
.
Let denote the number of such primes. Now we apply the three bounds:
which follows by adding all the primes directly with some computation,
using the harmonic series bound, and
via Prime Number Theorem. Hence the sum in question is certainly less than
for
large enough, establishing the central claim.
Hence some column has at least one half of its primes greater than
. Because this is greater than
for large
, these primes must all be distinct, so
exceeds their product, which is larger than
where
is some constant.