Difference between revisions of "1990 AHSME Problems/Problem 10"

m (Solution)
(Solution)
Line 12: Line 12:
 
<asy>import three;
 
<asy>import three;
 
unitsize(1cm);size(100);
 
unitsize(1cm);size(100);
draw((0,0,0)--(0,1,0),linewidth(2));
+
draw((0,0,0)--(0,1,0),red);
 
draw((0,0,1)--(0,0,0)--(1,0,0)--(1,0,1),red);
 
draw((0,0,1)--(0,0,0)--(1,0,0)--(1,0,1),red);
draw((0,0,1)--(1,0,1),linewidth(2));
+
draw((0,0,1)--(1,0,1),red);
 
draw((0,0,1)--(0,1,1)--(0,1,0)--(1,1,0)--(1,0,0),red);
 
draw((0,0,1)--(0,1,1)--(0,1,0)--(1,1,0)--(1,0,0),red);
draw((1,1,0)--(1,1,1),linewidth(2));
+
draw((1,1,0)--(1,1,1),red);
 
draw((0,1,1)--(1,1,1)--(1,0,1),red);
 
draw((0,1,1)--(1,1,1)--(1,0,1),red);
 
</asy>
 
</asy>

Revision as of 02:50, 14 February 2016

Problem

An $11\times 11\times 11$ wooden cube is formed by gluing together $11^3$ unit cubes. What is the greatest number of unit cubes that can be seen from a single point?

$\text{(A) 69} \quad \text{(B) IDK} \quad \text{(C) Deez nuts} \quad \text{(D) 9 +10 (21)} \quad \text{(E) (Not the answer)}$

Solution

[asy]import three; unitsize(1cm);size(100); draw((0,0,0)--(0,1,0),red); draw((0,0,1)--(0,0,0)--(1,0,0)--(1,0,1),red); draw((0,0,1)--(1,0,1),red); draw((0,0,1)--(0,1,1)--(0,1,0)--(1,1,0)--(1,0,0),red); draw((1,1,0)--(1,1,1),red); draw((0,1,1)--(1,1,1)--(1,0,1),red); [/asy] The best angle for cube viewing is centered on the corner. Meaning three of the six faces are visible. So therefore, the answer is just counting the number of cubes on the three faces. Which is 330 or $\fbox{D}$

See also

1990 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png