Difference between revisions of "2014 AIME II Problems/Problem 12"

(Solution)
(Solution 1: cleaned up wrong solution)
Line 3: Line 3:
  
 
== Solution 1 ==
 
== Solution 1 ==
Note that <math>\cos{3C}=-\cos{(3A+3B)}</math>. Thus, our expression is of the form <math>\cos{3A}+\cos{3B}-\cos{(3A+3B)}=1</math>. Let <math>\cos{3A}=x</math> and <math>\cos{3B}=y</math>. Expanding, we get <math>x+y-xy+\sqrt{1-x^2}\sqrt{1-y^2}=1</math>, or <math>-\sqrt{1-x^2}\sqrt{1-y^2}=(x-1)(y-1)</math>.  (why the minus sign at the left side ???) Since the right side of our equation must be non-positive, <math>x</math> or <math>y</math> is <math>\leq{1}</math>, and the other variable must take on a value of 1. WLOG, we can set <math>x=\cos{3A}=1</math>, or <math>A=0,120</math>; however, only 120 is valid, as we want a nondegenerate triangle. Since <math>B+C=60</math>, the maximum angle in the triangle is 120 degrees. Using Law of Cosines, we get <math>S^{2}=169+100+2(10)(13)(\frac{1}{2})=\framebox{399}</math>, and we're done.
+
Note that <math>\cos{3C}=-\cos{(3A+3B)}</math>. Thus, our expression is of the form <math>\cos{3A}+\cos{3B}-\cos{(3A+3B)}=1</math>. Let <math>\cos{3A}=x</math> and <math>\cos{3B}=y</math>. Expanding, we get <math>x+y-xy+\sqrt{1-x^2}\sqrt{1-y^2}=1</math>, or <math>\sqrt{1-x^2}\sqrt{1-y^2}=(x-1)(y-1)</math>.  
  
I believe there's a mistake in the solution. There shouldn't be a negative at the left hand side of the equation. We should get
+
Squaring both sides, we get <math>(1-x^2)(1-y^2) = [(x-1)(y-1)]^2</math>. Cancelling factors, <math>(1+x)(1+y) = (1-x)(1-y).</math>
<math>\sqrt{1-x^2}\sqrt{1-y^2}=(x-1)(y-1)</math>
+
Expanding, <math>xy+x+y+1 = 1-x-y+xy</math>.  Simplification leads to <math>x=-y</math>.
  
squaring both sides we get:
 
<math>(1-x^2)(1-y^2) = [(x-1)(y-1)]^2</math>
 
 
factoring:
 
<math>(1+x)(1+y) = (1-x)(1-y).</math>
 
Then:
 
<math>xy+x+y+1 = 1-x-y+xy.</math>
 
Then:
 
<math>2x+2y=0.</math>
 
Then:
 
<math>x=-y</math>
 
 
Therefore, cos(3C) must equal 1. So C could be 0 or 120 degrees. We eliminate 0 and use law of cosines to get our answer: <math>\framebox{399}</math>
 
Therefore, cos(3C) must equal 1. So C could be 0 or 120 degrees. We eliminate 0 and use law of cosines to get our answer: <math>\framebox{399}</math>
  

Revision as of 00:37, 30 January 2016

Problem

Suppose that the angles of $\triangle ABC$ satisfy $\cos(3A)+\cos(3B)+\cos(3C)=1.$ Two sides of the triangle have lengths 10 and 13. There is a positive integer $m$ so that the maximum possible length for the remaining side of $\triangle ABC$ is $\sqrt{m}.$ Find $m.$

Solution 1

Note that $\cos{3C}=-\cos{(3A+3B)}$. Thus, our expression is of the form $\cos{3A}+\cos{3B}-\cos{(3A+3B)}=1$. Let $\cos{3A}=x$ and $\cos{3B}=y$. Expanding, we get $x+y-xy+\sqrt{1-x^2}\sqrt{1-y^2}=1$, or $\sqrt{1-x^2}\sqrt{1-y^2}=(x-1)(y-1)$.

Squaring both sides, we get $(1-x^2)(1-y^2) = [(x-1)(y-1)]^2$. Cancelling factors, $(1+x)(1+y) = (1-x)(1-y).$ Expanding, $xy+x+y+1 = 1-x-y+xy$. Simplification leads to $x=-y$.

Therefore, cos(3C) must equal 1. So C could be 0 or 120 degrees. We eliminate 0 and use law of cosines to get our answer: $\framebox{399}$

Solution 2

As above, we can see that $\cos3A+\cos3B-\cos(3A+3B)=1$

Expanding, we get

$\cos3A+\cos3B-\cos3A\cos3B+\sin3A\sin3B=1$

$\cos3A\cos3B-\cos3A-\cos3B+1=\sin3A\sin3B$

$(\cos3A-1)(\cos3B-1)=\sin3A\sin3B$

$\frac{\cos3A-1}{\sin3A}\cdot\frac{\cos3B-1}{\sin3B}=1$

$\tan{\frac{3A}{2}}\tan{\frac{3B}{2}}=1$

Note that $\tan{x}=\frac{1}{\tan(90-x)}$, or $\tan{x}\tan(90-x)=1$

Thus $\frac{3A}{2}+\frac{3B}{2}=90$, or $A+B=60$.

Now we know that $C=120$, so we can just use Law or Cosines to get $\boxed{399}$

See also

2014 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png