Difference between revisions of "1958 AHSME Problems/Problem 31"

(Solution)
(Solution)
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
[asy]
+
<math>[asy]
 
size(300);
 
size(300);
 
defaultpen(linewidth(0.8));
 
defaultpen(linewidth(0.8));
Line 15: Line 15:
 
draw(A--B--C--A);
 
draw(A--B--C--A);
 
draw(D--B);
 
draw(D--B);
dot("<math>A</math>", A, SW);
+
dot("</math>A<math>", A, SW);
dot("<math>B</math>", B, NE);
+
dot("</math>B<math>", B, NE);
dot("<math>C</math>", C, SE);
+
dot("</math>C<math>", C, SE);
dot("<math>D</math>", D, S);
+
dot("</math>D<math>", D, S);
label("<math>70^\circ</math>",C,2*dir(180-35));
+
label("</math>70^\circ<math>",C,2*dir(180-35));
[/asy]
+
[/asy]</math>
 
<math>\fbox{}</math>
 
<math>\fbox{}</math>
  

Revision as of 01:04, 22 December 2015

Problem

The altitude drawn to the base of an isosceles triangle is $8$, and the perimeter $32$. The area of the triangle is:

$\textbf{(A)}\ 56\qquad  \textbf{(B)}\ 48\qquad  \textbf{(C)}\ 40\qquad  \textbf{(D)}\ 32\qquad  \textbf{(E)}\ 24$

Solution

$[asy] size(300); defaultpen(linewidth(0.8)); pair A=(-1,0),C=(1,0),B=dir(40),D=origin; draw(A--B--C--A); draw(D--B); dot("$A$", A, SW); dot("$B$", B, NE); dot("$C$", C, SE); dot("$D$", D, S); label("$70^\circ$",C,2*dir(180-35)); [/asy]$ $\fbox{}$

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png