Difference between revisions of "Menelaus' Theorem"
Pi3point14 (talk | contribs) (→Proof Using Barycentric coordinates) |
(→Proof) |
||
Line 39: | Line 39: | ||
Multiplying the two equalities together to eliminate the <math>PK</math> factor, we get: | Multiplying the two equalities together to eliminate the <math>PK</math> factor, we get: | ||
− | <math>\frac{AR}{RB}\cdot\frac{QC}{QA}= | + | <math>\frac{AR}{RB}\cdot\frac{QC}{QA}=\frac{PC}{PB}\implies \frac{AR}{RB}\cdot\frac{QC}{QA}\cdot\frac{PB}{PC}=1</math> |
==Proof Using [[Barycentric coordinates]]== | ==Proof Using [[Barycentric coordinates]]== |
Revision as of 23:42, 5 December 2015
This article is a stub. Help us out by expanding it.
Menelaus' Theorem deals with the collinearity of points on each of the three sides (extended when necessary) of a triangle. It is named for Menelaus of Alexandria.
Statement
A necessary and sufficient condition for points on the respective sides (or their extensions) of a triangle to be collinear is that
where all segments in the formula are directed segments.
Proof
Draw a line parallel to through to intersect at :
Multiplying the two equalities together to eliminate the factor, we get:
Proof Using Barycentric coordinates
Disclaimer: This proof is not nearly as elegant as the above one. It uses a bash-type approach, as barycentric coordinate proofs tend to be.
Suppose we give the points the following coordinates:
Note that this says the following:
The line through and is given by:
which yields, after simplification,
Plugging in the coordinates for yields . From we have Likewise, and
Substituting these values yields which simplifies to
QED