Difference between revisions of "2015 AMC 8 Problems/Problem 6"

Line 2: Line 2:
  
 
<math>\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701</math>
 
<math>\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701</math>
The area of <math>\triangle ABC</math> is equal to half the product of its base and height.  By the Pythagorean Theorem, we find its height is <math>\sqrt{1^2+2^2}=\sqrt{5}</math>, and its base is <math>\sqrt{2^2+4^2}=\sqrt{20}</math>.  We multiply these and divide by 2 to find the of the triangle is <math>\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5</math>.  Since the grid has an area of <math>30</math>, the fraction of the grid covered by the triangle is <math>\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}</math>.
 
  
 
==See Also==
 
==See Also==

Revision as of 16:25, 25 November 2015

In $\bigtriangleup ABC$, $AB=BC=29$, and $AC=42$. What is the area of $\bigtriangleup ABC$?

$\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701$

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png