Difference between revisions of "2015 AMC 8 Problems/Problem 3"
Math101010 (talk | contribs) m |
|||
Line 3: | Line 3: | ||
<math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad \textbf{(E) }10</math> | <math>\textbf{(A) }5\qquad\textbf{(B) }6\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad \textbf{(E) }10</math> | ||
+ | ===Solution=== | ||
+ | Jill arrives in <math>\dfrac{1}{10}</math> of an hour, which is <math>6</math> minutes. Jack arrives in <math>\dfrac{1}{4}</math> of an hour which is <math>15</math> minutes. Thus, the time difference is <math>\boxed{\textbf{(D)}~9}</math> minutes. | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2015|num-b=2|num-a=4}} | {{AMC8 box|year=2015|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:25, 25 November 2015
Jack and Jill are going swimming at a pool that is one mile from their house. They leave home simultaneously. Jill rides her bicycle to the pool at a constant speed of miles per hour. Jack walks to the pool at a constant speed of miles per hour. How many minutes before Jack does Jill arrive?
Solution
Jill arrives in of an hour, which is minutes. Jack arrives in of an hour which is minutes. Thus, the time difference is minutes.
See Also
2015 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.