Difference between revisions of "2001 USAMO Problems/Problem 2"
(→Problem) |
Anandiyer12 (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>ABC</math> be a [[triangle]] and let <math>\omega</math> be its [[incircle]]. Denote by <math>D_1</math> and <math>E_1</math> the points where <math>\omega</math> is tangent to sides <math>BC</math> and <math>AC</math>, respectively. Denote by <math>D_2</math> and <math>E_2</math> the points on sides <math>BC</math> and <math>AC</math>, respectively, such that <math>CD_2 = BD_1</math> and <math>CE_2 = AE_1</math>, and denote by <math>P</math> the point of intersection of segments <math>AD_2</math> and <math>BE_2</math>. Circle <math>\omega</math> intersects segment <math>AD_2</math> at two points, the closer of which to the vertex <math>A</math> is denoted by <math>Q</math>. Prove that <math>AQ = D_2P</math>. | Let <math>ABC</math> be a [[triangle]] and let <math>\omega</math> be its [[incircle]]. Denote by <math>D_1</math> and <math>E_1</math> the points where <math>\omega</math> is tangent to sides <math>BC</math> and <math>AC</math>, respectively. Denote by <math>D_2</math> and <math>E_2</math> the points on sides <math>BC</math> and <math>AC</math>, respectively, such that <math>CD_2 = BD_1</math> and <math>CE_2 = AE_1</math>, and denote by <math>P</math> the point of intersection of segments <math>AD_2</math> and <math>BE_2</math>. Circle <math>\omega</math> intersects segment <math>AD_2</math> at two points, the closer of which to the vertex <math>A</math> is denoted by <math>Q</math>. Prove that <math>AQ = D_2P</math>. | ||
+ | |||
+ | Problem | ||
+ | Let <math>ABC</math> be a triangle and let <math>\omega</math> be its incircle. Denote by <math>D_1</math> and <math>E_1</math> the points where <math>\omega</math> is tangent to sides <math>BC</math> and <math>AC</math>, respectively. Denote by <math>D_2</math> and <math>E_2</math> the points on sides <math>BC</math> and <math>AC</math>, respectively, such that <math>CD_2 = BD_1</math> and <math>CE_2 = AE_1</math>, and denote by <math>P</math> the point of intersection of segments <math>AD_2</math> and <math>BE_2</math>. Circle <math>\omega</math> intersects segment <math>AD_2</math> at two points, the closer of which to the vertex <math>A</math> is denoted by <math>Q</math>. Prove that <math>AQ = D_2P</math>. | ||
+ | |||
+ | Solution | ||
+ | Solution 1 | ||
+ | |||
+ | It is well known that the excircle opposite <math>A</math> is tangent to <math>\overline{BC}</math> at the point <math>D_2</math>. (Proof: let the points of tangency of the excircle with the lines <math>BC, AB, AC</math> be <math>D_3, F,G</math> respectively. Then <math>AB+BD_3=AB + BF=AF = AG = AC + AG=AC + CD_3</math>. It follows that <math>2CD_3 = AB + BC - AC</math>, and <math>CD_3 = s-b = BD_1 = CD_2</math>, so <math>D_3 \equiv D_2</math>.) | ||
+ | |||
+ | Now consider the homothety that carries the incircle of <math>\triangle ABC</math> to its excircle. The homothety also carries <math>Q</math> to <math>D_2</math> (since <math>A,Q,D_2</math> are collinear), and carries the tangency points <math>E_1</math> to <math>G</math>. It follows that <math>\frac{AQ}{QD_2} = \frac{AE_1}{E_1G} = \frac{s-a}{E_1C + CD_2} = \frac{s-a}{CD_1 + BD_1} = \frac{s-a}{a}</math>. | ||
+ | |||
+ | [asy] pathpen = linewidth(0.7); size(300); pen d = linetype("4 4") + linewidth(0.6); pair B=(0,0), C=(10,0), A=7*expi(1),O=D(incenter(A,B,C)),D1 = D(MP("D_1",foot(O,B,C))),E1 = D(MP("E_1",foot(O,A,C),NE)),E2 = D(MP("E_2",C+A-E1,NE)); /* arbitrary points */ /* ugly construction for OA */ pair Ca = 2C-A, Cb = bisectorpoint(Ca,C,B), OA = IP(A--A+10*(O-A),C--C+50*(Cb-C)), D2 = D(MP("D_2",foot(OA,B,C))), Fa=2B-A, Ga=2C-A, F=MP("F",D(foot(OA,B,Fa)),NW), G=MP("G",D(foot(OA,C,Ga)),NE); D(OA); D(MP("A",A,N)--MP("B",B,NW)--MP("C",C,NE)--cycle); D(incircle(A,B,C)); D(CP(OA,D2),d); D(B--Fa,linewidth(0.6)); D(C--Ga,linewidth(0.6)); D(MP("P",IP(D(A--D2),D(B--E2)),NNE)); D(MP("Q",IP(incircle(A,B,C),A--D2),SW)); clip((-20,-10)--(-20,20)--(20,20)--(20,-10)--cycle); [/asy] | ||
+ | By Menelaus' Theorem on <math>\triangle ACD_2</math> with segment <math>\overline{BE_2}</math>, it follows that <math>\frac{CE_2}{E_2A} \cdot \frac{AP}{PD_2} \cdot \frac{BD_2}{BC} = 1 \Longrightarrow \frac{AP}{PD_2} = \frac{(c - (s-a)) \cdot a}{(a-(s-c)) \cdot AE_1} = \frac{a}{s-a}</math>. It easily follows that <math>AQ = D_2P</math>. <math>\blacksquare</math> | ||
+ | |||
+ | Solution 2 | ||
+ | |||
+ | The key observation is the following lemma. | ||
+ | |||
+ | Lemma: Segment <math>D_1Q</math> is a diameter of circle <math>\omega</math>. | ||
+ | |||
+ | 2001usamo2-1.png | ||
+ | Proof: Let <math>I</math> be the center of circle <math>\omega</math>, i.e., <math>I</math> is the incenter of triangle <math>ABC</math>. Extend segment <math>D_1I</math> through <math>I</math> to intersect circle <math>\omega</math> again at <math>Q'</math>, and extend segment <math>AQ'</math> through <math>Q'</math> to intersect segment <math>BC</math> at <math>D'</math>. We show that <math>D_2 = D'</math>, which in turn implies that <math>Q = Q'</math>, that is, <math>D_1Q</math> is a diameter of <math>\omega</math>. | ||
+ | |||
+ | Let <math>l</math> be the line tangent to circle <math>\omega</math> at <math>Q'</math>, and let <math>l</math> intersect the segments <math>AB</math> and <math>AC</math> at <math>B_1</math> and <math>C_1</math>, respectively. Then <math>\omega</math> is an excircle of triangle <math>AB_1C_1</math>. Let <math>\mathbf{H}_1</math> denote the dilation with its center at <math>A</math> and ratio <math>AD'/AQ'</math>. Since <math>l\perp D_1Q'</math> and <math>BC\perp D_1Q'</math>, <math>l\parallel BC</math>. Hence <math>AB/AB_1 = AC/AC_1 = AD'/AQ'</math>. Thus <math>\mathbf{H}_1(Q') = D'</math>, <math>\mathbf{H}_1(B_1) = B</math>, and <math>\mathbf{H}_1(C_1) = C</math>. It also follows that an excircle <math>\Omega</math> of triangle <math>ABC</math> is tangent to the side <math>BC</math> at <math>D'</math>. | ||
+ | |||
+ | It is well known that <cmath>CD_1 = \frac{1}{2}(BC + CA - AB).</cmath> We compute <math>BD'</math>. Let <math>X</math> and <math>Y</math> denote the points of tangency of circle <math>\Omega</math> with rays <math>AB</math> and <math>AC</math>, respectively. Then by equal tangents, <math>AX = AY</math>, <math>BD' = BX</math>, and <math>D'C = YC</math>. Hence <cmath>AX = AY = \frac{1}{2}(AX + AY) = \frac{1}{2}(AB + BX + YC + CA) = \frac{1}{2}(AB + BC + CA).</cmath> It follows that <cmath>BD' = BX = AX - AB = \frac{1}{2}(BC + CA - AB).</cmath> Combining these two equations yields <math>BD' = CD_1</math>. Thus <cmath>BD_2 = BD_1 - D_2D_1 = D_2C - D_2D_1 = CD_1 = BD',</cmath> that is, <math>D' = D_2</math>, as desired. <math>\blacksquare</math> | ||
+ | |||
+ | Now we prove our main result. Let <math>M_1</math> and <math>M_2</math> be the respective midpoints of segments <math>BC</math> and <math>CA</math>. Then <math>M_1</math> is also the midpoint of segment <math>D_1D_2</math>, from which it follows that <math>IM_1</math> is the midline of triangle <math>D_1QD_2</math>. Hence <cmath>QD_2 = 2IM_1</cmath> and <math>AD_2\parallel M_1I</math>. Similarly, we can prove that <math>BE_2\parallel M_2I</math>. | ||
+ | |||
+ | 2001usamo2-2.png | ||
+ | Let <math>G</math> be the centroid of triangle <math>ABC</math>. Thus segments <math>AM_1</math> and <math>BM_2</math> intersect at <math>G</math>. Define transformation <math>\mathbf{H}_2</math> as the dilation with its center at <math>G</math> and ratio <math>-1/2</math>. Then <math>\mathbf{H}_2(A) = M_1</math> and <math>\mathbf{H}_2(B) = M_2</math>. Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since <math>AD_2\parallel M_1I</math> and <math>BE_2\parallel M_2I</math>, <math>\mathbf{H}_2</math> maps lines <math>AD_2</math> and <math>BE_2</math> to lines <math>M_1I</math> and <math>M_2I</math>, respectively. It also follows that <math>\mathbf{H}_2(I) = P</math> and <cmath>\frac{IM_1}{AP} = \frac{GM_1}{AG} = \frac{1}{2}</cmath> or <cmath>AP = 2IM_1.</cmath> This yields <cmath>AQ = AP - QP = 2IM_1 - QP = QD_2 - QP = PD_2,</cmath> as desired. | ||
+ | |||
+ | Note: We used directed lengths in our calculations to avoid possible complications caused by the different shapes of triangle <math>ABC</math>. | ||
== See also == | == See also == |
Revision as of 20:19, 23 September 2015
Problem
Let be a triangle and let be its incircle. Denote by and the points where is tangent to sides and , respectively. Denote by and the points on sides and , respectively, such that and , and denote by the point of intersection of segments and . Circle intersects segment at two points, the closer of which to the vertex is denoted by . Prove that .
Problem Let be a triangle and let be its incircle. Denote by and the points where is tangent to sides and , respectively. Denote by and the points on sides and , respectively, such that and , and denote by the point of intersection of segments and . Circle intersects segment at two points, the closer of which to the vertex is denoted by . Prove that .
Solution Solution 1
It is well known that the excircle opposite is tangent to at the point . (Proof: let the points of tangency of the excircle with the lines be respectively. Then . It follows that , and , so .)
Now consider the homothety that carries the incircle of to its excircle. The homothety also carries to (since are collinear), and carries the tangency points to . It follows that .
[asy] pathpen = linewidth(0.7); size(300); pen d = linetype("4 4") + linewidth(0.6); pair B=(0,0), C=(10,0), A=7*expi(1),O=D(incenter(A,B,C)),D1 = D(MP("D_1",foot(O,B,C))),E1 = D(MP("E_1",foot(O,A,C),NE)),E2 = D(MP("E_2",C+A-E1,NE)); /* arbitrary points */ /* ugly construction for OA */ pair Ca = 2C-A, Cb = bisectorpoint(Ca,C,B), OA = IP(A--A+10*(O-A),C--C+50*(Cb-C)), D2 = D(MP("D_2",foot(OA,B,C))), Fa=2B-A, Ga=2C-A, F=MP("F",D(foot(OA,B,Fa)),NW), G=MP("G",D(foot(OA,C,Ga)),NE); D(OA); D(MP("A",A,N)--MP("B",B,NW)--MP("C",C,NE)--cycle); D(incircle(A,B,C)); D(CP(OA,D2),d); D(B--Fa,linewidth(0.6)); D(C--Ga,linewidth(0.6)); D(MP("P",IP(D(A--D2),D(B--E2)),NNE)); D(MP("Q",IP(incircle(A,B,C),A--D2),SW)); clip((-20,-10)--(-20,20)--(20,20)--(20,-10)--cycle); [/asy] By Menelaus' Theorem on with segment , it follows that . It easily follows that .
Solution 2
The key observation is the following lemma.
Lemma: Segment is a diameter of circle .
2001usamo2-1.png Proof: Let be the center of circle , i.e., is the incenter of triangle . Extend segment through to intersect circle again at , and extend segment through to intersect segment at . We show that , which in turn implies that , that is, is a diameter of .
Let be the line tangent to circle at , and let intersect the segments and at and , respectively. Then is an excircle of triangle . Let denote the dilation with its center at and ratio . Since and , . Hence . Thus , , and . It also follows that an excircle of triangle is tangent to the side at .
It is well known that We compute . Let and denote the points of tangency of circle with rays and , respectively. Then by equal tangents, , , and . Hence It follows that Combining these two equations yields . Thus that is, , as desired.
Now we prove our main result. Let and be the respective midpoints of segments and . Then is also the midpoint of segment , from which it follows that is the midline of triangle . Hence and . Similarly, we can prove that .
2001usamo2-2.png Let be the centroid of triangle . Thus segments and intersect at . Define transformation as the dilation with its center at and ratio . Then and . Under the dilation, parallel lines go to parallel lines and the intersection of two lines goes to the intersection of their images. Since and , maps lines and to lines and , respectively. It also follows that and or This yields as desired.
Note: We used directed lengths in our calculations to avoid possible complications caused by the different shapes of triangle .
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.