Difference between revisions of "2015 USAMO Problems/Problem 2"
(→Solution) |
m (→Solution) |
||
Line 3: | Line 3: | ||
===Solution=== | ===Solution=== | ||
− | WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where <math>(1-a)^2+b^2=1 | + | WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where <math>(1-a)^2+b^2=1</math>. |
− | + | Let angle <math>\angle XAB=A</math>, which is an acute angle, <math>\tan{A}=t</math>, then <math>X=(1-a,at)</math>. | |
− | |||
− | + | Angle <math>\angle BOS=2A</math>, <math>S=(-\cos(2A),\sin(2A))</math>. | |
− | + | Let <math>M=(u,v)</math>, then <math>T=(2u+\cos(2A), 2v-\sin(2A))</math>. | |
− | The condition | + | The condition <math>TX \perp AX</math> yields: <math>(2v-\sin(2A)-at)/(2u+\cos(2A)+a-1)=\cot A. </math> (E1) |
− | + | Use identities <math>(\cos A)^2=1/(1+t^2)</math>, <math>\cos(2A)=2(\cos A)^2-1= 2/(1+t^2) -1</math>, <math>\sin(2A)=2\sin A\cos A=2t^2/(1+t^2)</math>, we obtain <math>2vt-at^2=2u+a</math>. (E1') | |
− | Expand (E3), using (E2) to replace 2( | + | The condition that <math>T</math> is on the circle yields <math>(2u+\cos(2A))^2+ (2v-\sin(2A))^2=1</math>, namely <math>v\sin(2A)-u\cos(2A)=u^2+v^2</math>. (E2) |
+ | |||
+ | <math>M</math> is the mid-point on the hypotenuse of triangle <math>STX</math>, hence <math>MS=MX</math>, yielding <math>(u+\cos(2A))^2+(v-\sin(2A))^2=(u+a-1)^2+(v-at)^2</math>. (E3) | ||
+ | |||
+ | Expand (E3), using (E2) to replace <math>2(v\sin(2A)-u\cos(2A))</math> with <math>2(u^2+v^2)</math>, and using (E1') to replace <math>a(-2vt+at^2)</math> with <math>-a(2u+a)</math>, and we obtain | ||
<math>u^2-u-a+v^2=0</math>, namely <math>(u-\frac{1}{2})^2+v^2=a+\frac{1}{4}</math>, which is a circle centered at <math>(\frac{1}{2},0)</math> with radius <math>r=\sqrt{a+\frac{1}{4}}</math>. | <math>u^2-u-a+v^2=0</math>, namely <math>(u-\frac{1}{2})^2+v^2=a+\frac{1}{4}</math>, which is a circle centered at <math>(\frac{1}{2},0)</math> with radius <math>r=\sqrt{a+\frac{1}{4}}</math>. |
Revision as of 16:33, 23 May 2015
Problem
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Solution
WLOG, let the circle be the unit circle centered at the origin, , where .
Let angle , which is an acute angle, , then .
Angle , . Let , then .
The condition yields: (E1)
Use identities , , , we obtain . (E1')
The condition that is on the circle yields , namely . (E2)
is the mid-point on the hypotenuse of triangle , hence , yielding . (E3)
Expand (E3), using (E2) to replace with , and using (E1') to replace with , and we obtain , namely , which is a circle centered at with radius .