Difference between revisions of "2015 AIME II Problems/Problem 7"
(→Solution #2) |
(→Solution #2) |
||
Line 28: | Line 28: | ||
==Solution #2== | ==Solution #2== | ||
− | Diagram: | + | Diagram:\\ |
(Diagram goes here) | (Diagram goes here) | ||
− | + | \\ | |
− | Similar triangles can also solve the problem. | + | Similar triangles can also solve the problem.\\ |
− | First, solve for the area of the triangle. <math>[ABC] = 90</math>. This can be done by Heron's Formula or placing an <math>8-15-17</math> right triangle on <math>BC</math> and solving. (The <math>8</math> side would be collinear with line <math>AB</math>) | + | First, solve for the area of the triangle. <math>[ABC] = 90</math>. This can be done by Heron's Formula or placing an <math>8-15-17</math> right triangle on <math>BC</math> and solving. (The <math>8</math> side would be collinear with line <math>AB</math>)\\ |
After finding the area, solve for the altitude to <math>BC</math>. Let <math>E</math> be the intersection of the altitude from <math>A</math> and side <math>BC</math>. Then <math>AE = \frac{36}{5}</math>. | After finding the area, solve for the altitude to <math>BC</math>. Let <math>E</math> be the intersection of the altitude from <math>A</math> and side <math>BC</math>. Then <math>AE = \frac{36}{5}</math>. | ||
− | Solving for <math>BE</math> using the Pythagorean Formula, we get <math>BE = \frac{48}{5}</math>. We then know that <math>CE = \frac{77}{5}</math>. | + | Solving for <math>BE</math> using the Pythagorean Formula, we get <math>BE = \frac{48}{5}</math>. We then know that <math>CE = \frac{77}{5}</math>.\\ |
− | Now consider the rectangle <math>PQRS</math>. Since <math>SR</math> is collinear with <math>BC</math> and parallel to <math>PQ</math>, <math>PQ</math> is parallel to <math>BC</math> meaning <math>\Delta APQ</math> is similar to <math>\Delta ABC</math>. | + | Now consider the rectangle <math>PQRS</math>. Since <math>SR</math> is collinear with <math>BC</math> and parallel to <math>PQ</math>, <math>PQ</math> is parallel to <math>BC</math> meaning <math>\Delta APQ</math> is similar to <math>\Delta ABC</math>. \\ |
− | Let <math>F</math> be the intersection between <math>AE</math> and <math>PQ</math>. By the similar triangles, we know that <math>\frac{PF}{FQ}=\frac{BE}{EC} = \frac{48}{77}</math>. Since <math>PF+FQ=PQ=\omega</math>. We can solve for <math>PF</math> and <math>FQ</math> in terms of <math>\omega</math>. We get that <math>PF=\frac{48}{125} \omega</math> and <math>FQ=\frac{77}{125} \omega</math>. | + | Let <math>F</math> be the intersection between <math>AE</math> and <math>PQ</math>. By the similar triangles, we know that <math>\frac{PF}{FQ}=\frac{BE}{EC} = \frac{48}{77}</math>. Since <math>PF+FQ=PQ=\omega</math>. We can solve for <math>PF</math> and <math>FQ</math> in terms of <math>\omega</math>. We get that <math>PF=\frac{48}{125} \omega</math> and <math>FQ=\frac{77}{125} \omega</math>.\\ |
− | Let's work with <math>PF</math>. We know that <math>PQ</math> is parallel to <math>BC</math> so <math>\Delta APF</math> is similar to <math>\Delta ABE</math>. We can set up the proportion: | + | Let's work with <math>PF</math>. We know that <math>PQ</math> is parallel to <math>BC</math> so <math>\Delta APF</math> is similar to <math>\Delta ABE</math>. We can set up the proportion:\\ |
<math>\frac{AF}{PF}=\frac{AE}{BE}=\frac{3}{4}</math>. Solving for <math>AF</math>, <math>AF = \frac{3}{4} PF = \frac{3}{4} \cdot \frac{48}{125} \omega = \frac{36}{125} \omega</math>. | <math>\frac{AF}{PF}=\frac{AE}{BE}=\frac{3}{4}</math>. Solving for <math>AF</math>, <math>AF = \frac{3}{4} PF = \frac{3}{4} \cdot \frac{48}{125} \omega = \frac{36}{125} \omega</math>. | ||
− | We can solve for <math>PS</math> then since we know that <math>PS=FE</math> and <math>FE= AE - AF = \frac{36}{5} - \frac{36}{125} \omega</math>. | + | We can solve for <math>PS</math> then since we know that <math>PS=FE</math> and <math>FE= AE - AF = \frac{36}{5} - \frac{36}{125} \omega</math>.\\ |
− | Therefore, <math>[PQRS] = PQ \cdot PS = \omega (\frac{36}{5} - \frac{36}{125} \omega) = \frac{36}{5}\omega - \frac{36}{125} \omega^2</math>. | + | Therefore, <math>[PQRS] = PQ \cdot PS = \omega (\frac{36}{5} - \frac{36}{125} \omega) = \frac{36}{5}\omega - \frac{36}{125} \omega^2</math>.\\ |
This means that <math>\beta = \frac{36}{125} \Rightarrow (m,n) = (36,125) \Rightarrow m+n = \boxed{161}</math>. | This means that <math>\beta = \frac{36}{125} \Rightarrow (m,n) = (36,125) \Rightarrow m+n = \boxed{161}</math>. | ||
Revision as of 12:38, 29 March 2015
Contents
Problem
Triangle has side lengths , , and . Rectangle has vertex on , vertex on , and vertices and on . In terms of the side length , the area of can be expressed as the quadratic polynomial
Area() = .
Then the coefficient , where and are relatively prime positive integers. Find .
Solution
If , the area of rectangle is , so
and . If , we can reflect over PQ, over , and over to completely cover rectangle , so the area of is half the area of the triangle. Using Heron's formula, since ,
so
and
so the answer is .
Solution #2
Diagram:\\ (Diagram goes here) \\ Similar triangles can also solve the problem.\\ First, solve for the area of the triangle. . This can be done by Heron's Formula or placing an right triangle on and solving. (The side would be collinear with line )\\ After finding the area, solve for the altitude to . Let be the intersection of the altitude from and side . Then . Solving for using the Pythagorean Formula, we get . We then know that .\\ Now consider the rectangle . Since is collinear with and parallel to , is parallel to meaning is similar to . \\ Let be the intersection between and . By the similar triangles, we know that . Since . We can solve for and in terms of . We get that and .\\ Let's work with . We know that is parallel to so is similar to . We can set up the proportion:\\ . Solving for , . We can solve for then since we know that and .\\ Therefore, .\\ This means that .
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.