Difference between revisions of "1991 AIME Problems/Problem 7"
Mathcool2009 (talk | contribs) m (→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Find <math>A^2_{}</math>, where <math>A^{}_{}</math> is the sum of the [[absolute value]]s of all roots of the following equation: | + | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Find <math>A^2_{}</math>, where <math>A^{}_{}</math> is the sum of the [[absolute value]]s of all roots of the following equation: |
<div style="text-align:center"><math>x = \sqrt{19} + \frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{x}}}}}}}}} | <div style="text-align:center"><math>x = \sqrt{19} + \frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{{\sqrt{19}+\frac{91}{x}}}}}}}}} | ||
− | </math></div> | + | </math></div><!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> |
== Solution == | == Solution == |
Revision as of 17:50, 27 March 2015
Problem
Find , where is the sum of the absolute values of all roots of the following equation:
Solution
Let . Then , from which we realize that . This is because if we expand the entire expression, we will get a fraction of the form on the right hand side, which makes the equation simplify to a quadratic. As this quadratic will have two roots, they must be the same roots as the quadratic .
The given finite expansion can then be easily seen to reduce to the quadratic equation . The solutions are . Therefore, . We conclude that .
See also
1991 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.