Difference between revisions of "2000 AMC 12 Problems/Problem 12"

(Solution)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>A, M,</math> and <math>C</math> be [[nonnegative integer]]s such that <math>A + M + C=12</math>. What is the maximum value of <math>A \cdot M \cdot C + A \cdot M + M \cdot C + A \cdot C</math>?
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Let <math>A, M,</math> and <math>C</math> be [[nonnegative integer]]s such that <math>A + M + C=12</math>. What is the maximum value of <math>A \cdot M \cdot C + A \cdot M + M \cdot C + A \cdot C</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
 
<math> \mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 }  </math>
 
<math> \mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 }  </math>

Revision as of 17:50, 27 March 2015

Problem

Let $A, M,$ and $C$ be nonnegative integers such that $A + M + C=12$. What is the maximum value of $A \cdot M \cdot C + A \cdot M + M \cdot C + A \cdot C$?

$\mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 }$

Solution

When $A=M=C=4$ then $AMC+AM+AC+MC = 112$, and that is the greatest answer choice, so the answer is $\boxed{E}$.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png