Difference between revisions of "2001 AMC 8 Problems/Problem 23"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Points <math>R</math>, <math>S</math> and <math>T</math> are vertices of an equilateral triangle, and points <math>X</math>, <math>Y</math> and <math>Z</math> are midpoints of its sides. How many noncongruent triangles can be
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Points <math>R</math>, <math>S</math> and <math>T</math> are vertices of an equilateral triangle, and points <math>X</math>, <math>Y</math> and <math>Z</math> are midpoints of its sides. How many noncongruent triangles can be
drawn using any three of these six points as vertices?
+
drawn using any three of these six points as vertices?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
 
<asy>
 
<asy>

Revision as of 17:46, 27 March 2015

Problem

Points $R$, $S$ and $T$ are vertices of an equilateral triangle, and points $X$, $Y$ and $Z$ are midpoints of its sides. How many noncongruent triangles can be drawn using any three of these six points as vertices?

[asy] pair SS,R,T,X,Y,Z; SS = (2,2*sqrt(3)); R = (0,0); T = (4,0); X = (2,0); Y = (1,sqrt(3)); Z = (3,sqrt(3)); dot(SS); dot(R); dot(T); dot(X); dot(Y); dot(Z); label("$S$",SS,N); label("$R$",R,SW); label("$T$",T,SE); label("$X$",X,S); label("$Y$",Y,NW); label("$Z$",Z,NE); [/asy]

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 20$

Solution

There are $6$ points in the figure, and $3$ of them are needed to form a triangle, so there are ${6\choose{3}} =20$ possible triples of $3$ of the $6$ points. However, some of these created congruent triangles, and some don't even make triangles at all.

Case 1: Triangles congruent to $\triangle RST$ There is obviously only $1$ of these: $\triangle RST$ itself.

Case 2: Triangles congruent to $\triangle SYZ$ There are $4$ of these: $\triangle SYZ, \triangle RXY, \triangle TXZ,$ and $\triangle XYZ$.

Case 3: Triangles congruent to $\triangle RSX$ There are $6$ of these: $\triangle RSX, \triangle TSX, \triangle STY, \triangle RTY, \triangle RSZ,$ and $\triangle RTZ$.

Case 4: Triangle congruent to $\triangle SYX$ There are again $6$ of these: $\triangle SYX, \triangle SZX, \triangle TYZ, \triangle TYX, \triangle RXZ,$ and $\triangle RYZ$.

However, if we add these up, we accounted for only $1+4+6+6=17$ of the $20$ possible triplets. We see that the remaining triplets don't even form triangles; they are $SYR, RXT,$ and $TZS$. Adding these $3$ into the total yields for all of the possible triplets, so we see that there are only $4$ possible non-congruent, non-degenerate triangles, $\boxed{\text{D}}$

See Also

2001 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png