Difference between revisions of "2015 AIME II Problems/Problem 4"
(Used official wording) |
m (Sectioned it) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
In an isosceles trapezoid, the parallel bases have lengths <math>\log 3</math> and <math>\log 192</math>, and the altitude to these bases has length <math>\log 16</math>. The perimeter of the trapezoid can be written in the form <math>\log 2^p 3^q</math>, where <math>p</math> and <math>q</math> are positive integers. Find <math>p + q</math>. | In an isosceles trapezoid, the parallel bases have lengths <math>\log 3</math> and <math>\log 192</math>, and the altitude to these bases has length <math>\log 16</math>. The perimeter of the trapezoid can be written in the form <math>\log 2^p 3^q</math>, where <math>p</math> and <math>q</math> are positive integers. Find <math>p + q</math>. | ||
+ | |||
+ | ==Solution== |
Revision as of 15:49, 26 March 2015
Problem
In an isosceles trapezoid, the parallel bases have lengths and , and the altitude to these bases has length . The perimeter of the trapezoid can be written in the form , where and are positive integers. Find .