Difference between revisions of "1985 AIME Problems/Problem 4"

(Solution 1)
(Solution 2)
Line 16: Line 16:
 
\frac{GF}{BE}=\frac{CG}{CB}\implies
 
\frac{GF}{BE}=\frac{CG}{CB}\implies
 
\frac{\frac{1}{\sqrt{1985}}}{BE}=\frac{\frac{1}{n}}{1}\implies
 
\frac{\frac{1}{\sqrt{1985}}}{BE}=\frac{\frac{1}{n}}{1}\implies
BE=\frac{n\sqrt{1985}}{1985}</math>
+
BE=\frac{n\sqrt{1985}}{1985}
 +
\end{eqnarray*}</math>
 
<div style="text-align:left;">
 
<div style="text-align:left;">
 
Also,
 
Also,
Line 22: Line 23:
 
<math>\begin{eqnarray*}
 
<math>\begin{eqnarray*}
 
\frac{BE}{1}=\frac{EC}{\frac{n-1}{n}}\implies
 
\frac{BE}{1}=\frac{EC}{\frac{n-1}{n}}\implies
EC=\frac{\sqrt{1985}}{1985}(n-1)</math>
+
EC=\frac{\sqrt{1985}}{1985}(n-1)
 +
\end{eqnarray*}</math>
 
<div style="text-align:left;">
 
<div style="text-align:left;">
 
Thus,
 
Thus,
Line 29: Line 31:
 
2(BE)(EC)+\frac{1}{1985}=1\\
 
2(BE)(EC)+\frac{1}{1985}=1\\
 
2n^{2}-2n+1=1985\\
 
2n^{2}-2n+1=1985\\
n(n-1)=992</math>
+
n(n-1)=992
 +
\end{eqnarray*}</math>
 
<div style="text-align:center;">
 
<div style="text-align:center;">
 
Simple factorization and guess and check gives us <math>\boxed{032}</math>.
 
Simple factorization and guess and check gives us <math>\boxed{032}</math>.

Revision as of 21:46, 8 March 2015

Problem

A small square is constructed inside a square of area 1 by dividing each side of the unit square into $n$ equal parts, and then connecting the vertices to the division points closest to the opposite vertices. Find the value of $n$ if the the area of the small square is exactly $\frac1{1985}$.

AIME 1985 Problem 4.png

Solution 1

The lines passing through $A$ and $C$ divide the square into three parts, two right triangles and a parallelogram. Using the smaller side of the parallelogram, $1/n$, as the base, where the height is 1, we find that the area of the parallelogram is $A = \frac{1}{n}$. By the Pythagorean Theorem, the longer base of the parallelogram has length $l = \sqrt{1^2 + \left(\frac{n - 1}{n}\right)^2} = \frac{1}{n}\sqrt{2n^2 - 2n + 1}$, so the parallelogram has height $h = \frac{A}{l} = \frac{1}{\sqrt{2n^2 - 2n + 1}}$. But the height of the parallelogram is the side of the little square, so $2n^2 - 2n + 1 = 1985$. Solving this quadratic equation gives $n = \boxed{032}$.

Solution 2

Aime.png

Surrounding the square with area $\frac{1}{1985}$ are $4$ right triangles with hypotenuse $1$ (sides of the large square). Thus, $X + \frac{1}{1985} = 1$, where $X$ is the area of the of the 4 triangles. We can thus use proportions to solve this problem.

$\begin{eqnarray*} \frac{GF}{BE}=\frac{CG}{CB}\implies \frac{\frac{1}{\sqrt{1985}}}{BE}=\frac{\frac{1}{n}}{1}\implies BE=\frac{n\sqrt{1985}}{1985} \end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Also,

$\begin{eqnarray*} \frac{BE}{1}=\frac{EC}{\frac{n-1}{n}}\implies EC=\frac{\sqrt{1985}}{1985}(n-1) \end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Thus,

$\begin{eqnarray*} 2(BE)(EC)+\frac{1}{1985}=1\\ 2n^{2}-2n+1=1985\\ n(n-1)=992 \end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)

Simple factorization and guess and check gives us $\boxed{032}$.

See also

1985 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions