Difference between revisions of "Mock AIME 1 Pre 2005 Problems/Problem 15"

m (See also)
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
+
Triangle <math>ABC</math> has an inradius of <math>5</math> and a circumradius of <math>16</math>. If <math>2\cos{B} = \cos{A} + \cos{C}</math>, then the area of triangle <math>ABC</math> can be expressed as <math>\frac{a\sqrt{b}}{c}</math>, where <math>a, b,</math> and <math>c</math> are positive integers such that <math>a</math> and <math>c</math> are relatively prime and <math>b</math> is not divisible by the square of any prime. Compute <math>a+b+c</math>.
 
 
 
 
  
 
== Solution ==
 
== Solution ==

Revision as of 16:28, 8 October 2014

Problem

Triangle $ABC$ has an inradius of $5$ and a circumradius of $16$. If $2\cos{B} = \cos{A} + \cos{C}$, then the area of triangle $ABC$ can be expressed as $\frac{a\sqrt{b}}{c}$, where $a, b,$ and $c$ are positive integers such that $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Compute $a+b+c$.

Solution

See also

Mock AIME 1 Pre 2005 (Problems, Source)
Preceded by
Problem 14
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15