Difference between revisions of "2001 IMO Problems"

m (Problem 3)
m (Problem 4)
Line 14: Line 14:
  
 
==Problem 4==
 
==Problem 4==
 +
 +
Let <math>n_1, n_2, \dots , n_m</math> be integers where <math>m>1</math> is odd. Let <math>x = (x_1, \dots , x_m)</math> denote a permutation of the integers <math>1, 2, \cdots , m</math>. Let <math>f(x) = x_1n_1 + x_2n_2 + ... + x_mn_m</math>. Show that for some distinct permutations <math>a</math>, <math>b</math> the difference <math>f(a) - f(b)</math> is a multiple of <math>m!</math>.
  
 
==Problem 5==
 
==Problem 5==

Revision as of 01:54, 6 October 2014

Problem 1

Consider an acute triangle $\triangle ABC$. Let $P$ be the foot of the altitude of triangle $\triangle ABC$ issuing from the vertex $A$, and let $O$ be the circumcenter of triangle $\triangle ABC$. Assume that $\angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle COP < 90^{\circ}$.

Problem 2

Let $a,b,c$ be positive real numbers. Prove that $\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1$.

Problem 3

Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

Problem 4

Let $n_1, n_2, \dots , n_m$ be integers where $m>1$ is odd. Let $x = (x_1, \dots , x_m)$ denote a permutation of the integers $1, 2, \cdots , m$. Let $f(x) = x_1n_1 + x_2n_2 + ... + x_mn_m$. Show that for some distinct permutations $a$, $b$ the difference $f(a) - f(b)$ is a multiple of $m!$.

Problem 5

Problem 6

See Also