Difference between revisions of "1958 AHSME Problems/Problem 2"

(Added page)
 
m (See also)
 
(2 intermediate revisions by 2 users not shown)
Line 17: Line 17:
 
<math> \frac{xy}{y-x}=z</math>
 
<math> \frac{xy}{y-x}=z</math>
  
The answer is therefore <math>mathbf{(D)}</math>.  
+
The answer is therefore <math>\boxed{\text{D}}</math>.
  
 
==See also==
 
==See also==
  
{{AHSME box|year=1958|num-b=1|num-a=3}}
+
{{AHSME 50p box|year=1958|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 05:10, 3 October 2014

Problem

If $\frac {1}{x} - \frac {1}{y} = \frac {1}{z}$, then $z$ equals:

$\textbf{(A)}\ y - x\qquad \textbf{(B)}\ x - y\qquad \textbf{(C)}\ \frac {y - x}{xy}\qquad \textbf{(D)}\ \frac {xy}{y - x}\qquad \textbf{(E)}\ \frac {xy}{x - y}$

Solution

$\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$

$\frac{y}{xy}-\frac{x}{xy}=\frac{1}{z}$

$\frac{y-x}{xy}=\frac{1}{z}$

$\frac{1}{\frac{y-x}{xy}}=\frac{1}{\frac{1}{z}}$

$\frac{xy}{y-x}=z$

The answer is therefore $\boxed{\text{D}}$.

See also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png