Difference between revisions of "2004 AMC 10A Problems/Problem 15"
m (→Solution) |
|||
Line 11: | Line 11: | ||
Therefore, <math>1+\frac{y}x</math> is maximized when <math>\frac{y}x</math> is minimized, which occurs when <math>|x|</math> is the largest and <math>|y|</math> is the smallest. | Therefore, <math>1+\frac{y}x</math> is maximized when <math>\frac{y}x</math> is minimized, which occurs when <math>|x|</math> is the largest and <math>|y|</math> is the smallest. | ||
− | This occurs at (-4,2), so <math>\frac{x+y}x=1-\frac12=\frac12\Rightarrow \mathrm{(D)}</math>. | + | This occurs at <math>(-4,2)</math>, so <math>\frac{x+y}x=1-\frac12=\frac12\Rightarrow\boxed{\mathrm{(D)}\ \frac{1}{2}}</math>. |
==See also== | ==See also== |
Revision as of 23:50, 20 July 2014
Problem
Given that and , what is the largest possible value of ?
Solution
Rewrite as .
We also know that because and are of opposite sign.
Therefore, is maximized when is minimized, which occurs when is the largest and is the smallest.
This occurs at , so .
See also
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.