Difference between revisions of "2014 USAMO Problems"

(Problem 2)
Line 4: Line 4:
 
[[2014 USAMO Problems/Problem 1|Solution]]
 
[[2014 USAMO Problems/Problem 1|Solution]]
 
===Problem 2===
 
===Problem 2===
 +
Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))</cmath> for all <math>x, y \in \mathbb{Z}</math> with <math>x \neq 0</math>.
 +
 
[[2014 USAMO Problems/Problem 2|Solution]]
 
[[2014 USAMO Problems/Problem 2|Solution]]
 +
 
===Problem 3===
 
===Problem 3===
 
[[2014 USAMO Problems/Problem 3|Solution]]
 
[[2014 USAMO Problems/Problem 3|Solution]]

Revision as of 17:12, 29 April 2014

Day 1

Problem 1

Solution

Problem 2

Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that \[xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))\] for all $x, y \in \mathbb{Z}$ with $x \neq 0$.

Solution

Problem 3

Solution

Day 2

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution