Difference between revisions of "2014 USAJMO Problems"
(→Problem 3) |
(→Problem 3) |
||
Line 9: | Line 9: | ||
===Problem 3=== | ===Problem 3=== | ||
Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))</cmath> for all <math>x, y \in \mathbb{Z}</math> with <math>x \neq 0</math>. | Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))</cmath> for all <math>x, y \in \mathbb{Z}</math> with <math>x \neq 0</math>. | ||
+ | |||
[[2014 USAJMO Problems/Problem 3|Solution]] | [[2014 USAJMO Problems/Problem 3|Solution]] | ||
Revision as of 17:11, 29 April 2014
Contents
Day 1
Problem 1
Let , , be real numbers greater than or equal to . Prove that Solution
Problem 2
Problem 3
Let be the set of integers. Find all functions such that for all with .