Difference between revisions of "2014 USAJMO Problems"

(Created page with "==Day 1== ===Problem 1=== Solution ===Problem 2=== Solution ===Problem 3=== [[2014 USAJMO Problems/Problem ...")
 
(Problem 1)
Line 2: Line 2:
  
 
===Problem 1===
 
===Problem 1===
 +
Let <math>a</math>, <math>b</math>, <math>c</math> be real numbers greater than or equal to <math>1</math>. Prove that <cmath>\min{\left (\frac{10a^2-5a+1}{b^2-5b+1},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )}\leq abc </cmath>
 
[[2014 USAJMO Problems/Problem 1|Solution]]
 
[[2014 USAJMO Problems/Problem 1|Solution]]
 +
 
===Problem 2===
 
===Problem 2===
 
[[2014 USAJMO Problems/Problem 2|Solution]]
 
[[2014 USAJMO Problems/Problem 2|Solution]]

Revision as of 17:09, 29 April 2014

Day 1

Problem 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[\min{\left (\frac{10a^2-5a+1}{b^2-5b+1},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )}\leq abc\] Solution

Problem 2

Solution

Problem 3

Solution

Day 2

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution