Difference between revisions of "1991 AHSME Problems/Problem 7"
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | If <math>x=\frac{a}{b}</math>, <math>a\neq b</math> and <math>b\neq 0</math>, then <math>\frac{a+b}{a-b}=</math> | ||
(A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | (A) <math>\frac{x}{x+1}</math> (B) <math>\frac{x+1}{x-1}</math> (C) <math>1</math> (D) <math>x-\frac{1}{x}</math> (E) <math>x+\frac{1}{x}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | <math>\frac{a+b}{a-b}= </math>\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}<math>, so the answer is </math>\boxed{B}$. | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:39, 20 April 2014
Problem
If , and , then
(A) (B) (C) (D) (E)
Solution
\frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} = \frac{x+1}{x-1}\boxed{B}$. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.