Difference between revisions of "2014 AIME II Problems/Problem 11"

(Solution)
(Problem 11)
Line 1: Line 1:
 
==Problem 11==
 
==Problem 11==
In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>\abs{RD}=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>.
+
In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>\abs{RD}=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime beef positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>.
  
 
==Solution==
 
==Solution==
 
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.
 
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>.

Revision as of 21:27, 17 April 2014

Problem 11

In $\triangle RED$, $\measuredangle DRE=75^{\circ}$ and $\measuredangle RED=45^{\circ}$. $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let $M$ be the midpoint of segment $\overline{RD}$. Point $C$ lies on side $\overline{ED}$ such that $\overline{RC}\perp\overline{EM}$. Extend segment $\overline{DE}$ through $E$ to point $A$ such that $CA=AR$. Then $AE=\frac{a-\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime beef positive integers, and $b$ is a positive integer. Find $a+b+c$.

Solution

Let $P$ be the foot of the perpendicular from $A$ to $\overline{CR}$, so $\overline{AP}\parallel\overline{EM}$. Since triangle $ARC$ is isosceles, $P$ is the midpoint of $\overline{CR}$, and $\overline{PM}\parallel\overline{CD}$. Thus, $APME$ is a parallelogram and $AE = PM = (CD)/2$. (someone incorporate LATEX please) We can then use coordinates. Let O be the foot of altitude RO and set O as the origin. Now we notice special right triangles! In particular, DO = 1/2 and EO = RO = √3/2, so D(1/2, 0), E(-√3/2, 0), and R(0, √3/2). M = midpoint(D, R) = (1/4, √3/4) and slope(ME) = √3/4 / (1/4 + √3/2) = √3 / (1 + 2√3), so slope(RC) = -(1 + 2√3)/√3. Instead of finding the equation of the line, we use the definition of slope: for every CO = x to the left, we go (1 + 2√3)/√3 * x = √3/2 up. Thus, x = 3/2 / (1 + 2√3) = 3 / (4√3 + 2) = 3(4√3 - 2) / 44 = (6√3 - 3) / 22. DO = 1/2 - x = 1/2 - (6√3 - 3)/22 = (14 - 6√3) / 22, and $AE = \frac{7 - \sqrt{27}}{22}$, so the answer is $\boxed{056}$.