Difference between revisions of "2014 AIME II Problems/Problem 11"
5849206328x (talk | contribs) (Created page with "==Problem 11== In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>\abs{RD}=1</math>. Let <math>M</mat...") |
5849206328x (talk | contribs) (→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. | Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = (CD)/2</math>. | ||
+ | |||
+ | We can then use coordinates to find that <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. |
Revision as of 12:23, 10 April 2014
Problem 11
In , and . $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime positive integers, and is a positive integer. Find .
Solution
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and .
We can then use coordinates to find that , so the answer is .