Difference between revisions of "2009 USAMO Problems/Problem 5"
m |
m |
||
Line 30: | Line 30: | ||
dot("$T$", T, NW); | dot("$T$", T, NW); | ||
</asy></center> | </asy></center> | ||
+ | |||
+ | '''If''': | ||
Note that <cmath>\begin{align*}\measuredangle GBT+\measuredangle TRG&=\frac{m\widehat{TQ}}{2}+\measuredangle TRB+\measuredangle BRG\\ | Note that <cmath>\begin{align*}\measuredangle GBT+\measuredangle TRG&=\frac{m\widehat{TQ}}{2}+\measuredangle TRB+\measuredangle BRG\\ | ||
&=\frac{m\widehat{TQ}+m\widehat{DQ}+m\widehat{CB}+m\widehat{BT}}{2}.\\ | &=\frac{m\widehat{TQ}+m\widehat{DQ}+m\widehat{CB}+m\widehat{BT}}{2}.\\ | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Thus, <math>BTRG</math> is cyclic | + | Thus, <math>BTRG</math> is cyclic. |
Also, note that <math>GSCP</math> is cyclic because <cmath>\begin{align*}\measuredangle CSG+\measuredangle GPC&=\measuredangle CBA+\measuredangle APC\\ | Also, note that <math>GSCP</math> is cyclic because <cmath>\begin{align*}\measuredangle CSG+\measuredangle GPC&=\measuredangle CBA+\measuredangle APC\\ | ||
Line 40: | Line 42: | ||
\end{align*}</cmath> depending on the configuration. | \end{align*}</cmath> depending on the configuration. | ||
− | Next, we have <math>T, G, C</math> are collinear since <cmath>\measuredangle GTR=\measuredangle GBR=\frac{m\widehat{DQ}}{2}=\frac{m\widehat{QC}}{2}=\measuredangle CTQ | + | Next, we have <math>T, G, C</math> are collinear since <cmath>\measuredangle GTR=\measuredangle GBR=\frac{m\widehat{DQ}}{2}=\frac{m\widehat{QC}}{2}=\measuredangle CTQ.</cmath> |
− | |||
Therefore, <cmath>\begin{align*}\measuredangle RQP+\measuredangle PSR&=\frac{m\widehat{PBT}}{2}+\measuredangle PCG\\ | Therefore, <cmath>\begin{align*}\measuredangle RQP+\measuredangle PSR&=\frac{m\widehat{PBT}}{2}+\measuredangle PCG\\ | ||
&=\frac{m\widehat{PBT}+m\widehat{TDP}}{2}\\ | &=\frac{m\widehat{PBT}+m\widehat{TDP}}{2}\\ | ||
&=180^\circ | &=180^\circ | ||
− | \end{align*}</cmath> | + | \end{align*},</cmath> so <math>PQRS</math> is cyclic. |
− | + | ||
+ | '''Only If''': | ||
+ | These steps can be reversed. | ||
== See Also == | == See Also == |
Revision as of 16:18, 23 March 2014
Problem
Trapezoid , with
, is inscribed in circle
and point
lies inside triangle
. Rays
and
meet
again at points
and
, respectively. Let the line through
parallel to
intersect
and
at points
and
, respectively. Prove that quadrilateral
is cyclic if and only if
bisects
.
Solution
We will use directed angles in this solution. Extend to
as follows:
![[asy] import cse5; import graph; import olympiad; dotfactor = 3; unitsize(1.5inch); path circle = Circle(origin, 1); draw(circle); pair A = (-.6, .8), B = (.6, .8), C = (.9, -sqrt(.19)), D = (-.9, -sqrt(.19)), G = bisectorpoint(C, B, D); draw(A--B--C--D--cycle); draw(B--D); dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, SE); dot("$D$", D, SW); dot("$G$", G, dir(40)); pair P = IP(L(A, G, 10, 10), circle, 1), Q = IP(L(B, G, 10, 10), circle, 1); draw(A--P--C); draw(B--Q); dot("$P$", P, SE); dot("$Q$", Q, S); pair R = IP((-1, G.y)--(1, G.y), B--D), S = IP((-1, G.y)--(1, G.y), B--C); draw(P--Q--R--S--cycle); dot("$R$", R, N); dot("$S$", S, E); pair T = IP(L(Q, R, 10, 10), circle, 0); draw(R--T--C, dashed); draw(T--B, dashed); dot("$T$", T, NW); [/asy]](http://latex.artofproblemsolving.com/5/a/8/5a8fabce24c6ba27a5dee4820e82aad9df746ab0.png)
If:
Note that
Thus,
is cyclic.
Also, note that is cyclic because
depending on the configuration.
Next, we have are collinear since
Therefore, so
is cyclic.
Only If: These steps can be reversed.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.