Difference between revisions of "2009 USAMO Problems/Problem 5"
m |
|||
Line 15: | Line 15: | ||
pair A = (-.6, .8), B = (.6, .8), C = (.9, -sqrt(.19)), D = (-.9, -sqrt(.19)), G = bisectorpoint(C, B, D); | pair A = (-.6, .8), B = (.6, .8), C = (.9, -sqrt(.19)), D = (-.9, -sqrt(.19)), G = bisectorpoint(C, B, D); | ||
− | draw(A--B--C--D--cycle); draw( | + | draw(A--B--C--D--cycle); draw(B--D); |
dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, SE); dot("$D$", D, SW); dot("$G$", G, dir(40)); | dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, SE); dot("$D$", D, SW); dot("$G$", G, dir(40)); | ||
pair P = IP(L(A, G, 10, 10), circle, 1), Q = IP(L(B, G, 10, 10), circle, 1); | pair P = IP(L(A, G, 10, 10), circle, 1), Q = IP(L(B, G, 10, 10), circle, 1); | ||
− | draw(A--P); draw(B--Q); | + | draw(A--P--C); draw(B--Q); |
dot("$P$", P, SE); dot("$Q$", Q, S); | dot("$P$", P, SE); dot("$Q$", Q, S); | ||
Revision as of 16:08, 23 March 2014
Problem
Trapezoid , with
, is inscribed in circle
and point
lies inside triangle
. Rays
and
meet
again at points
and
, respectively. Let the line through
parallel to
intersect
and
at points
and
, respectively. Prove that quadrilateral
is cyclic if and only if
bisects
.
Solution
We will use directed angles in this solution. Extend to
as follows:
![[asy] import cse5; import graph; import olympiad; dotfactor = 3; unitsize(1.5inch); path circle = Circle(origin, 1); draw(circle); pair A = (-.6, .8), B = (.6, .8), C = (.9, -sqrt(.19)), D = (-.9, -sqrt(.19)), G = bisectorpoint(C, B, D); draw(A--B--C--D--cycle); draw(B--D); dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, SE); dot("$D$", D, SW); dot("$G$", G, dir(40)); pair P = IP(L(A, G, 10, 10), circle, 1), Q = IP(L(B, G, 10, 10), circle, 1); draw(A--P--C); draw(B--Q); dot("$P$", P, SE); dot("$Q$", Q, S); pair R = IP((-1, G.y)--(1, G.y), B--D), S = IP((-1, G.y)--(1, G.y), B--C); draw(P--Q--R--S--cycle); dot("$R$", R, N); dot("$S$", S, E); pair T = IP(L(Q, R, 10, 10), circle, 0); draw(R--T--C, dashed); draw(T--B, dashed); dot("$T$", T, NW); [/asy]](http://latex.artofproblemsolving.com/5/a/8/5a8fabce24c6ba27a5dee4820e82aad9df746ab0.png)
Note that
Thus,
is cyclic iff
bisects
since that would imply
.
Also, note that is cyclic because
depending on the configuration.
Next, we have are collinear since
iff
bisects
.
Therefore,
iff
bisects
, as desired.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.