Difference between revisions of "2012 AMC 12B Problems/Problem 1"

(See Also)
 
(21 intermediate revisions by 10 users not shown)
Line 1: Line 1:
Each third-grade classroom at Pearl Creek Elementary has 18 students and 2 pet rabbits. How many more students than rabbits are there in all 4 of the third-grade classrooms?
+
{{duplicate|[[2012 AMC 12B Problems|2012 AMC 12B #1]] and [[2012 AMC 10B Problems|2012 AMC 10B #1]]}}
  
(A) 48    (B) 56    (C) 64    (D) 72    (E) 80
+
== Problem ==
 +
 +
Each third-grade classroom at Pearl Creek Elementary has <math>18</math> students and <math>2</math> pet rabbits. How many more students than rabbits are there in all <math>4</math> of the third-grade classrooms?
  
                Solution:
+
<math> \textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 72\qquad\textbf{(E)}\ 80 </math>
Multiplying 18 and 2 by 4 we get 72 and 8 students and rabbits respectively. Subtracting 72 from 8 we get
+
 
      64 which is choice '''C'''
+
== Solution ==
 +
 
 +
=== Solution 1 ===
 +
 
 +
Multiplying <math>18</math> and <math>2</math> by <math>4</math> we get <math>72</math> students and <math>8</math> rabbits. We then subtract: <math>72 - 8 = \boxed{\textbf{(C)}\ 64}.</math>
 +
 
 +
=== Solution 2 ===
 +
 
 +
In each class, there are <math>18-2=16</math> more students than rabbits. So for all classrooms, the difference between students and rabbits is <math>16 \times 4 = \boxed{\textbf{(C)}\ 64}</math>
 +
 
 +
== See Also ==
 +
 
 +
{{AMC10 box|year=2012|ab=B|before=First Question|num-a=2}}
 +
{{AMC12 box|year=2012|ab=B|before=First Question|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 20:05, 8 February 2014

The following problem is from both the 2012 AMC 12B #1 and 2012 AMC 10B #1, so both problems redirect to this page.

Problem

Each third-grade classroom at Pearl Creek Elementary has $18$ students and $2$ pet rabbits. How many more students than rabbits are there in all $4$ of the third-grade classrooms?

$\textbf{(A)}\ 48\qquad\textbf{(B)}\ 56\qquad\textbf{(C)}\ 64\qquad\textbf{(D)}\ 72\qquad\textbf{(E)}\ 80$

Solution

Solution 1

Multiplying $18$ and $2$ by $4$ we get $72$ students and $8$ rabbits. We then subtract: $72 - 8 = \boxed{\textbf{(C)}\ 64}.$

Solution 2

In each class, there are $18-2=16$ more students than rabbits. So for all classrooms, the difference between students and rabbits is $16 \times 4 = \boxed{\textbf{(C)}\ 64}$

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png