Difference between revisions of "2007 AMC 12B Problems/Problem 23"
LOTRFan123 (talk | contribs) (→Solution 2) |
|||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Let <math>a</math> and <math>b</math> be the two legs of the triangle. | Let <math>a</math> and <math>b</math> be the two legs of the triangle. | ||
Revision as of 19:54, 25 December 2013
Problem 23
How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to times their perimeters?
Solution
Let and be the two legs of the triangle.
We have .
Then .
We can complete the square under the root, and we get, .
Let and , we have .
After rearranging, squaring both sides, and simplifying, we have .
Putting back and , and after factoring using , we've got .
Factoring 72, we get 6 pairs of and
And this gives us solutions .
See Also
2007 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.