Difference between revisions of "2013 AMC 8 Problems/Problem 20"

(Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
A semicircle has symmetry, so the center is exactly at the midpoint of the 2 side on the rectangle, making the radius, by the Pythagorean Theorem, <math>\sqrt{1^2+1^2}=\sqrt{2}</math>. The area is <math>\frac{2\pi}{2}=\boxed{(C) \pi}</math>.
+
A semicircle has symmetry, so the center is exactly at the midpoint of the 2 side on the rectangle, making the radius, by the Pythagorean Theorem, <math>\sqrt{1^2+1^2}=\sqrt{2}</math>. The area is <math>\frac{2\pi}{2}=\boxed{\textbf{(C)}\ \pi}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=19|num-a=21}}
 
{{AMC8 box|year=2013|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 08:33, 27 November 2013

Problem

A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle?

$\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$

Solution

A semicircle has symmetry, so the center is exactly at the midpoint of the 2 side on the rectangle, making the radius, by the Pythagorean Theorem, $\sqrt{1^2+1^2}=\sqrt{2}$. The area is $\frac{2\pi}{2}=\boxed{\textbf{(C)}\ \pi}$.

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png