Difference between revisions of "1962 AHSME Problems/Problem 32"

(Created page with "==Problem== If <math>x_{k+1} = x_k + \frac12 for k=1, 2, \dots, n-1</math> and <math>x_1=1</math>, find <math>x_1 + x_2 + \dots + x_n</math>. <math> \textbf{(A)}\ \frac{n+1}{2}...")
 
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
"Unsolved"
+
{{solution}}

Revision as of 22:00, 10 November 2013

Problem

If $x_{k+1} = x_k + \frac12 for k=1, 2, \dots, n-1$ and $x_1=1$, find $x_1 + x_2 + \dots + x_n$.

$\textbf{(A)}\ \frac{n+1}{2}\qquad\textbf{(B)}\ \frac{n+3}{2}\qquad\textbf{(C)}\ \frac{n^2-1}{2}\qquad\textbf{(D)}\ \frac{n^2+n}{4}\qquad\textbf{(E)}\ \frac{n^2+3n}{4}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.