Difference between revisions of "1962 AHSME Problems/Problem 29"

(Created page with "==Problem== Which of the following sets of x-values satisfy the inequality 2x^2 + x < 6? <math> \textbf{(A)}\ -2 < x <\frac{3}{2}\qquad\textbf{(B)}\ x >\frac{3}2\text{ or }x <-...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Which of the following sets of x-values satisfy the inequality 2x^2 + x < 6?  
+
Which of the following sets of <math>x</math>-values satisfy the inequality <math>2x^2 + x < 6</math>?  
  
 
<math> \textbf{(A)}\ -2 < x <\frac{3}{2}\qquad\textbf{(B)}\ x >\frac{3}2\text{ or }x <-2\qquad\textbf{(C)}\ x <\frac{3}2\qquad</math>
 
<math> \textbf{(A)}\ -2 < x <\frac{3}{2}\qquad\textbf{(B)}\ x >\frac{3}2\text{ or }x <-2\qquad\textbf{(C)}\ x <\frac{3}2\qquad</math>

Revision as of 22:02, 9 November 2013

Problem

Which of the following sets of $x$-values satisfy the inequality $2x^2 + x < 6$?

$\textbf{(A)}\ -2 < x <\frac{3}{2}\qquad\textbf{(B)}\ x >\frac{3}2\text{ or }x <-2\qquad\textbf{(C)}\ x <\frac{3}2\qquad$

$\textbf{(D)}\ \frac{3}2 < x < 2\qquad\textbf{(E)}\ x <-2$

Solution

"Unsolved"