Difference between revisions of "1998 AHSME Problems/Problem 26"
(solutions, {{image}} needed) |
|||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In quadrilateral <math>ABCD</math>, it is given that <math>\angle A = 120^{\circ}</math>, angles <math>B</math> and <math>D</math> are right | + | In [[quadrilateral]] <math>ABCD</math>, it is given that <math>\angle A = 120^{\circ}</math>, angles <math>B</math> and <math>D</math> are [[right angle]]s, <math>AB = 13</math>, and <math>AD = 46</math>. Then <math>AC=</math> |
+ | |||
<math>\mathrm{(A)}\ 60 | <math>\mathrm{(A)}\ 60 | ||
\qquad\mathrm{(B)}\ 62 | \qquad\mathrm{(B)}\ 62 | ||
Line 10: | Line 11: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
− | Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a < | + | Let the extensions of <math>\overline{DA}</math> and <math>\overline{CB}</math> be at <math>E</math>. Since <math>\angle BAD = 120^{\circ}</math>, <math>\angle BAE = 60^{\circ}</math> and <math>\triangle ABE</math> is a <math>30-60-90</math> triangle. Also, <math>\triangle ABE \sim \triangle CDE</math>, so <math>\triangle CDE</math> is also a <math>30-60-90</math> triangle. |
− | { | + | <center><asy> |
+ | size(200); | ||
+ | defaultpen(0.8); | ||
+ | pair D=(0,0), C=(0,24*3^0.5), A=(46,0), E=(72,0), B=(46+13/2,13*3^.5/2); | ||
+ | pair P=(C+D)/2, Q=(D+A)/2, R=(A+E)/2, T=(A+B)/2; | ||
+ | draw(D--A--B--C--cycle); | ||
+ | draw(C--A); | ||
+ | draw(A--E--B,dashed); | ||
+ | label("\(A\)",A,SSW); | ||
+ | label("\(B\)",B,NNE); | ||
+ | label("\(C\)",C,WNW); | ||
+ | label("\(D\)",D,SSW); | ||
+ | label("\(E\)",E,SSE); | ||
+ | label("24\(\sqrt{3}\)",P,W); | ||
+ | label("46",Q,S); | ||
+ | label("26",R,S); | ||
+ | label("13",T,WNW); | ||
+ | </asy></center> | ||
− | Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, < | + | |
+ | Thus <math>AE = 2AB = 26</math>, and <math>CD = \frac{26 + 46}{\sqrt{3}} = 24\sqrt{3}</math>. By the [[Pythagorean Theorem]] on <math>\triangle ACD</math>, <cmath>AC = \sqrt{(46)^2 + (24\sqrt{3})^2} = 62 \Rightarrow \mathrm{(B)}.</cmath> | ||
=== Solution 2 === | === Solution 2 === | ||
− | + | <center><asy> | |
− | Opposite angles add up to <math>180^{\circ}</math>, so <math>ABCD</math> is a cyclic quadrilateral. Also, <math>\angle B = \angle D = 90^{\circ}</math>, from which it follows that <math>\overline{AC}</math> is a diameter of the circumscribing circle. We can apply the extended version of the [[Law of Sines]] on <math>\triangle ABD</math>: | + | import olympiad; |
+ | size(180); | ||
+ | defaultpen(0.8); | ||
+ | pair D=(0,0), C=(0,24*3^0.5), A=(46,0), B=(46+13/2,13*3^.5/2); | ||
+ | pair P=(C+D)/2, Q=(D+A)/2, T=(A+B)/2; | ||
+ | draw(D--A--B--C--cycle); | ||
+ | draw(B--D,dashed); | ||
+ | draw(A--C,dashed); | ||
+ | draw(circumcircle(A,B,C)); | ||
+ | label("\(A\)",A,SSW); | ||
+ | label("\(B\)",B,NNE); | ||
+ | label("\(C\)",C,WNW); | ||
+ | label("\(D\)",D,SSW); | ||
+ | label("\(O\)",circumcenter(A,B,C),SW); | ||
+ | dot(circumcenter(A,B,C)); | ||
+ | label("46",Q,S); | ||
+ | label("13",T,E); | ||
+ | </asy></center> | ||
+ | |||
+ | Opposite angles add up to <math>180^{\circ}</math>, so <math>ABCD</math> is a [[cyclic quadrilateral]]. Also, <math>\angle B = \angle D = 90^{\circ}</math>, from which it follows that <math>\overline{AC}</math> is a diameter of the circumscribing circle. We can apply the extended version of the [[Law of Sines]] on <math>\triangle ABD</math>: | ||
<cmath>AC = 2R = \frac{BD}{\sin 120^{\circ}} = \frac{2}{\sqrt{3}} BD</cmath> | <cmath>AC = 2R = \frac{BD}{\sin 120^{\circ}} = \frac{2}{\sqrt{3}} BD</cmath> | ||
Line 26: | Line 64: | ||
<cmath>BD^2 = 13^2 + 46^2 - 2 \cdot 13 \cdot 46 \cdot \cos 120^{\circ} = 2883</cmath> | <cmath>BD^2 = 13^2 + 46^2 - 2 \cdot 13 \cdot 46 \cdot \cos 120^{\circ} = 2883</cmath> | ||
− | So <math>AC = \frac{2}{\sqrt{3}} \sqrt{2883} = 62</math>. | + | So <math>AC = \frac{2}{\sqrt{3}} \cdot \sqrt{2883} = 62</math>. |
== See also == | == See also == | ||
Line 32: | Line 70: | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 13:30, 5 July 2013
Problem
In quadrilateral , it is given that , angles and are right angles, , and . Then
Solution
Solution 1
Let the extensions of and be at . Since , and is a triangle. Also, , so is also a triangle.
Thus , and . By the Pythagorean Theorem on ,
Solution 2
Opposite angles add up to , so is a cyclic quadrilateral. Also, , from which it follows that is a diameter of the circumscribing circle. We can apply the extended version of the Law of Sines on :
By the Law of Cosines on :
So .
See also
1998 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 25 |
Followed by Problem 27 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.