Difference between revisions of "1991 AHSME Problems/Problem 14"

(Created page with "If <math>x</math> is the cube of a positive integer and <math>d</math> is the number of positive integers that are divisors of <math>x</math>, then <math>d</math> could be (A) <...")
 
Line 2: Line 2:
  
 
(A) <math>200</math>  (B) <math>201</math>  (C) <math>202</math>  (D) <math>203</math>  (E) <math>204</math>
 
(A) <math>200</math>  (B) <math>201</math>  (C) <math>202</math>  (D) <math>203</math>  (E) <math>204</math>
 +
{{MAA Notice}}

Revision as of 12:53, 5 July 2013

If $x$ is the cube of a positive integer and $d$ is the number of positive integers that are divisors of $x$, then $d$ could be

(A) $200$ (B) $201$ (C) $202$ (D) $203$ (E) $204$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png