Difference between revisions of "1980 AHSME Problems/Problem 7"

(Created page with "==Problem== Sides <math>AB,BC,CD</math> and <math>DA</math> of convex polygon <math>ABCD</math> have lengths 3,4,12, and 13, respectively, and <math>\measuredangle CBA</math> is...")
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Sides <math>AB,BC,CD</math> and <math>DA</math> of convex polygon <math>ABCD</math> have lengths 3,4,12, and 13, respectively, and <math>\measuredangle CBA</math> is a right angle. The area of the quadrilateral is
+
Sides <math>AB,BC,CD</math> and <math>DA</math> of convex polygon <math>ABCD</math> have lengths 3, 4, 12, and 13, respectively, and <math>\angle CBA</math> is a right angle. The area of the quadrilateral is
  
 
<asy>
 
<asy>
Line 21: Line 21:
  
 
<math>\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48</math>
 
<math>\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48</math>
 +
 +
== Solution ==
 +
 +
Connect C and A, and we have a 3-4-5 right triangle and 5-12-13 right triangle. The area of both is <math> \frac{3\cdot4}{2}+\frac{5\cdot12}{2}=36\Rightarrow\boxed{(B)} </math>.
 +
 +
== See also ==
 +
{{AHSME box|year=1980|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Latest revision as of 11:47, 5 July 2013

Problem

Sides $AB,BC,CD$ and $DA$ of convex polygon $ABCD$ have lengths 3, 4, 12, and 13, respectively, and $\angle CBA$ is a right angle. The area of the quadrilateral is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); real r=degrees((12,5)), s=degrees((3,4)); pair D=origin, A=(13,0), C=D+12*dir(r), B=A+3*dir(180-(90-r+s)); draw(A--B--C--D--cycle); markscalefactor=0.05; draw(rightanglemark(A,B,C)); pair point=incenter(A,C,D); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$3$", A--B, dir(A--B)*dir(-90)); label("$4$", B--C, dir(B--C)*dir(-90)); label("$12$", C--D, dir(C--D)*dir(-90)); label("$13$", D--A, dir(D--A)*dir(-90));[/asy]

$\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48$

Solution

Connect C and A, and we have a 3-4-5 right triangle and 5-12-13 right triangle. The area of both is $\frac{3\cdot4}{2}+\frac{5\cdot12}{2}=36\Rightarrow\boxed{(B)}$.

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png