Difference between revisions of "1980 AHSME Problems/Problem 1"

(Problem)
 
(2 intermediate revisions by one other user not shown)
Line 4: Line 4:
  
 
<math>\text{(A)} \ 12 \qquad \text{(B)} \ 13 \qquad \text{(C)} \ 14 \qquad \text{(D)} \ 15 \qquad \text{(E)} \ 16</math>
 
<math>\text{(A)} \ 12 \qquad \text{(B)} \ 13 \qquad \text{(C)} \ 14 \qquad \text{(D)} \ 15 \qquad \text{(E)} \ 16</math>
 +
 +
== Solution ==
 +
 +
We want to find the smallest integer <math>x</math> so that <math>7x < 100</math>. Dividing by 7 gets <math>x < 14\dfrac{2}{7}</math>, so the answer is 14. <math>\boxed{(C)}</math>
 +
 +
 +
== See also ==
 +
{{AHSME box|year=1980|before=First question|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 11:47, 5 July 2013

Problem

The largest whole number such that seven times the number is less than 100 is

$\text{(A)} \ 12 \qquad \text{(B)} \ 13 \qquad \text{(C)} \ 14 \qquad \text{(D)} \ 15 \qquad \text{(E)} \ 16$

Solution

We want to find the smallest integer $x$ so that $7x < 100$. Dividing by 7 gets $x < 14\dfrac{2}{7}$, so the answer is 14. $\boxed{(C)}$


See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png