Difference between revisions of "1994 AJHSME Problems/Problem 7"

(Created page with "If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math> <asy> pair A,B,C,D,EE; A = origin;...")
 
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math>
 
If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math>
  
Line 14: Line 16:
  
 
<math>\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ</math>
 
<math>\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ</math>
 +
 +
 +
==Solution==
 +
The sum of the angles in a triangle is <math>180^\circ</math>. We can find <math>\angle ABE = 80^\circ</math>, so <math>\angle CBD = 180-80=100^\circ</math>.
 +
 +
<cmath>\angle BDC = 180-100-30=\boxed{\text{(B)}\ 50^\circ}</cmath>
 +
 +
==See Also==
 +
{{AJHSME box|year=1994|num-b=6|num-a=8}}
 +
{{MAA Notice}}

Latest revision as of 23:13, 4 July 2013

Problem

If $\angle A = 60^\circ$, $\angle E = 40^\circ$ and $\angle C = 30^\circ$, then $\angle BDC =$

[asy] pair A,B,C,D,EE; A = origin; B = (2,0); C = (5,0); EE = (1.5,3); D = (1.75,1.5); draw(A--C--D); draw(B--EE--A); dot(A); dot(B); dot(C); dot(D); dot(EE); label("$A$",A,SW); label("$B$",B,S); label("$C$",C,SE); label("$D$",D,NE); label("$E$",EE,N); [/asy]

$\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ$


Solution

The sum of the angles in a triangle is $180^\circ$. We can find $\angle ABE = 80^\circ$, so $\angle CBD = 180-80=100^\circ$.

\[\angle BDC = 180-100-30=\boxed{\text{(B)}\ 50^\circ}\]

See Also

1994 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png