Difference between revisions of "1994 AJHSME Problems/Problem 2"

 
(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
==Solution==
 
==Solution==
  
<math> 1+ 2+ 3 + 4 + 5 + 6 + 7 + 8 + 9 = \dfrac{(9)(10)}{2} = 45 + 55 = 100 </math>
+
<math> 1+ 2+ 3 + 4 + 5 + 6 + 7 + 8 + 9 = \dfrac{(9)(10)}{2} = 45 </math>
  
<math>\dfrac{100}{10} = \boxed{\text{(D)}\ 10}</math>
+
<math>\frac{45+55}{10} = \dfrac{100}{10} = \boxed{\text{(D)}\ 10}</math>
 +
 
 +
==See Also==
 +
{{AJHSME box|year=1994|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 23:12, 4 July 2013

Problem

$\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}+\dfrac{55}{10}=$

$\text{(A)}\ 4\dfrac{1}{2} \qquad \text{(B)}\ 6.4 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$

Solution

$1+ 2+ 3 + 4 + 5 + 6 + 7 + 8 + 9 = \dfrac{(9)(10)}{2} = 45$

$\frac{45+55}{10} = \dfrac{100}{10} = \boxed{\text{(D)}\ 10}$

See Also

1994 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png