Difference between revisions of "1991 AJHSME Problems/Problem 15"

(Created page with '==Problem== All six sides of a rectangular solid were rectangles. A one-foot cube was cut out of the rectangular solid as shown. The total number of square feet in the surface…')
 
 
Line 24: Line 24:
 
{{AJHSME box|year=1991|num-b=14|num-a=16}}
 
{{AJHSME box|year=1991|num-b=14|num-a=16}}
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:07, 4 July 2013

Problem

All six sides of a rectangular solid were rectangles. A one-foot cube was cut out of the rectangular solid as shown. The total number of square feet in the surface of the new solid is how many more or less than that of the original solid?

[asy] unitsize(24); draw((0,0)--(1,0)--(1,3)--(0,3)--cycle);  draw((1,0)--(1+9*sqrt(3)/2,9/2)--(1+9*sqrt(3)/2,15/2)--(1+5*sqrt(3)/2,11/2)--(1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),4)--(1+2*sqrt(3),5)--(1,3)); draw((0,3)--(2*sqrt(3),5)--(1+2*sqrt(3),5)); draw((1+9*sqrt(3)/2,15/2)--(9*sqrt(3)/2,15/2)--(5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,5)); draw((1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),9/2)); draw((1+5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,11/2)); label("$1'$",(.5,0),S); label("$3'$",(1,1.5),E); label("$9'$",(1+9*sqrt(3)/4,9/4),S); label("$1'$",(1+9*sqrt(3)/4,17/4),S); label("$1'$",(1+5*sqrt(3)/2,5),E);label("$1'$",(1/2+5*sqrt(3)/2,11/2),S); [/asy]

$\text{(A)}\ 2\text{ less} \qquad \text{(B)}\ 1\text{ less} \qquad \text{(C)}\ \text{the same} \qquad \text{(D)}\ 1\text{ more} \qquad \text{(E)}\ 2\text{ more}$

Solution

Initially, that one-foot cube contributed 3 faces to the surface area of the whole solid. When it was removed, these 3 faces are removed, but there are 3 new faces where the cube was carved out, so the net change is $0 \rightarrow \boxed{\text{C}}$.

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png