Difference between revisions of "1991 AJHSME Problems/Problem 10"

(New page: == Problem 10 == The area in square units of the region enclosed by parallelogram ABCD, with A(-1,0), B(0,2), C(4,2), D(3,0) is <math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 8 } \qquad \m...)
 
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem 10 ==
 
== Problem 10 ==
The area in square units of the region enclosed by parallelogram ABCD, with A(-1,0), B(0,2), C(4,2), D(3,0) is
 
  
<math> \mathrm{(A) \ 6 } \qquad \mathrm{(B) \ 8 } \qquad \mathrm{(C) \ 12 } \qquad \mathrm{(D) \ 15 } \qquad \mathrm{(E) \ 18 </math>
+
The area in square units of the region enclosed by parallelogram <math>ABCD</math> is
 +
 
 +
<asy>
 +
unitsize(24);
 +
pair A,B,C,D;
 +
A=(-1,0); B=(0,2); C=(4,2); D=(3,0);
 +
draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0));
 +
draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25));
 +
dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E);
 +
label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE);
 +
label("$A$",A,SW); label("$B$",B,NW);
 +
</asy>
 +
 
 +
<math>\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18</math>
 +
 
 
==Solution==
 
==Solution==
Note the base AD=BC=4 and the height is the y-value of B and C which is 2 <math>\Rightarrow \text{Area}=2\cdot4=8 \Rightarrow \boxed{B}</math>
+
 
 +
The base is <math>\overline{BC}=4</math>. The height has a length of the difference of the y-coordinates of A and B, which is 2. Therefore the area is <math>4\cdot 2=8\Rightarrow \boxed{\mathrm{B}}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AJHSME box|year=1991|num-b=9|num-a=11}}
 +
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:07, 4 July 2013

Problem 10

The area in square units of the region enclosed by parallelogram $ABCD$ is

[asy] unitsize(24); pair A,B,C,D; A=(-1,0); B=(0,2); C=(4,2); D=(3,0);  draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); label("$A$",A,SW); label("$B$",B,NW); [/asy]

$\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

Solution

The base is $\overline{BC}=4$. The height has a length of the difference of the y-coordinates of A and B, which is 2. Therefore the area is $4\cdot 2=8\Rightarrow \boxed{\mathrm{B}}$.

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png