Difference between revisions of "1987 AJHSME Problems/Problem 5"

 
(One intermediate revision by one other user not shown)
Line 13: Line 13:
 
==Solution==
 
==Solution==
  
<math>(.4) \cdot (.22) = \frac{4}{10} \cdot \frac{22}{100} = \frac{4\cdot 22}{10\cdot 100} = \frac{88}{1000} = \boxed{0.088}.</math>
+
<math>(.4) \cdot (.22) = \frac{4}{10} \cdot \frac{22}{100} = \frac{4\cdot 22}{10\cdot 100} = \frac{88}{1000} = 0.088\rightarrow \boxed{\text{A}}</math>
  
 
==See Also==
 
==See Also==
  
[[1987 AJHSME Problems]]
+
{{AJHSME box|year=1987|num-b=4|num-a=6}}
 +
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 22:52, 4 July 2013

Problem

The area of the rectangular region is

[asy] draw((0,0)--(4,0)--(4,2.2)--(0,2.2)--cycle,linewidth(.5 mm)); label(".22 m",(4,1.1),E); label(".4 m",(2,0),S); [/asy]

$\text{(A)}\ \text{.088 m}^2 \qquad \text{(B)}\ \text{.62 m}^2 \qquad \text{(C)}\ \text{.88 m}^2 \qquad \text{(D)}\ \text{1.24 m}^2 \qquad \text{(E)}\ \text{4.22 m}^2$

Solution

$(.4) \cdot (.22) = \frac{4}{10} \cdot \frac{22}{100} = \frac{4\cdot 22}{10\cdot 100} = \frac{88}{1000} = 0.088\rightarrow \boxed{\text{A}}$

See Also

1987 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png