Difference between revisions of "2008 AMC 12B Problems/Problem 14"

(New page: ==Problem== A circle has a radius of <math>\log_{10}{(a^2)}</math> and a circumference of <math>\log_{10}{(b^4)}</math>. What is <math>\log_{a}{b}</math>? <math>\textbf{(A)}\ \frac{1}{4\p...)
 
 
Line 13: Line 13:
 
==See Also==  
 
==See Also==  
 
{{AMC12 box|year=2008|ab=B|num-b=13|num-a=15}}
 
{{AMC12 box|year=2008|ab=B|num-b=13|num-a=15}}
 +
{{MAA Notice}}

Latest revision as of 09:54, 4 July 2013

Problem

A circle has a radius of $\log_{10}{(a^2)}$ and a circumference of $\log_{10}{(b^4)}$. What is $\log_{a}{b}$?

$\textbf{(A)}\ \frac{1}{4\pi} \qquad \textbf{(B)}\ \frac{1}{\pi} \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ 2\pi \qquad \textbf{(E)}\ 10^{2\pi}$

Solution

Let $C$ be the circumference of the circle, and let $r$ be the radius of the circle.

Using log properties, $C=\log_{10}{(b^4)}=4\log_{10}{(b)}$ and $r=\log_{10}{(a^2)}=2\log_{10}{(a)}$.

Since $C=2\pi r$, $4\log_{10}{(b)}=2\pi\cdot2\log_{10}{(a)} \Rightarrow \log_{a}{b} = \frac{\log_{10}{(b)}}{\log_{10}{(a)}}=\pi \Rightarrow C$.

See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png