Difference between revisions of "1995 AIME Problems/Problem 9"

m (Solution 2)
Line 14: Line 14:
  
 
== Solution 2 ==
 
== Solution 2 ==
In a similar fashion, we encode the angles as complex numbers, so if <math>BM=x</math>, then <math>\angle BAD=\text{Arg}(11+xi)</math> and <math>\angle BDM=\text{Arg}(1+xi)</math>. So we need only find <math>x</math> such that <math>\text{Arg}((11+xi)^3)=\text{Arg}(1331-33x^2+(363x-x^3)i)=\text{Arg}(1+xi)</math>. This will happen when <math>\frac{363x-x^3}{1331-33x^2}=x</math>,  which simplifies to <math>121x-4x^3=0</math>. Therefore, <math>x=\frac{11}{2}</math>. By the Pythagorean Theorem, <math>AB=\frac{11\sqrt{5}{2}</math>, so the perimeter is <math>11+11\sqrt{5}=11+\sqrt{605}</math>, giving us our answer, <math>\boxed{616}</math>.
+
In a similar fashion, we encode the angles as complex numbers, so if <math>BM=x</math>, then <math>\angle BAD=\text{Arg}(11+xi)</math> and <math>\angle BDM=\text{Arg}(1+xi)</math>. So we need only find <math>x</math> such that <math>\text{Arg}((11+xi)^3)=\text{Arg}(1331-33x^2+(363x-x^3)i)=\text{Arg}(1+xi)</math>. This will happen when <math>\frac{363x-x^3}{1331-33x^2}=x</math>,  which simplifies to <math>121x-4x^3=0</math>. Therefore, <math>x=\frac{11}{2}</math>. By the Pythagorean Theorem, <math>AB=\frac{11\sqrt{5}}{2}</math>, so the perimeter is <math>11+11\sqrt{5}=11+\sqrt{605}</math>, giving us our answer, <math>\boxed{616}</math>.
 
 
  
 
== See also ==
 
== See also ==

Revision as of 23:08, 10 June 2013

Problem

Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Then the perimeter of $\triangle ABC$ may be written in the form $a+\sqrt{b},$ where $a$ and $b$ are integers. Find $a+b.$

[asy] import graph; size(5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3;  draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("$11$",(1,1.63),W);  dot((1,3),ds); label("$A$",(1,3),N); dot((0,0),ds); label("$B$",(0,0),SW); dot((2,0),ds); label("$C$",(2,0),SE); dot((1,0),ds); label("$M$",(1,0),S); dot((1,0.7),ds); label("$D$",(1,0.7),NE);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]

Solution 1

Let $x=\angle CAM$, so $3x=\angle CDM$. Then, $\frac{\tan 3x}{\tan x}=\frac{CM/1}{CM/11}=11$. Expanding $\tan 3x$ using the angle sum identity gives \[\tan 3x=\tan(2x+x)=\frac{3\tan x-\tan^3x}{1-3\tan^2x}.\] Thus, $\frac{3-\tan^2x}{1-3\tan^2x}=11$. Solving, we get $\tan x= \frac 12$. Hence, $CM=\frac{11}2$ and $AC= \frac{11\sqrt{5}}2$ by the Pythagorean Theorem. The total perimeter is $2(AC + CM) = \sqrt{605}+11$. The answer is thus $a+b=\boxed{616}$.

Solution 2

In a similar fashion, we encode the angles as complex numbers, so if $BM=x$, then $\angle BAD=\text{Arg}(11+xi)$ and $\angle BDM=\text{Arg}(1+xi)$. So we need only find $x$ such that $\text{Arg}((11+xi)^3)=\text{Arg}(1331-33x^2+(363x-x^3)i)=\text{Arg}(1+xi)$. This will happen when $\frac{363x-x^3}{1331-33x^2}=x$, which simplifies to $121x-4x^3=0$. Therefore, $x=\frac{11}{2}$. By the Pythagorean Theorem, $AB=\frac{11\sqrt{5}}{2}$, so the perimeter is $11+11\sqrt{5}=11+\sqrt{605}$, giving us our answer, $\boxed{616}$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions