Difference between revisions of "2006 Cyprus Seniors Provincial/2nd grade/Problems"
m (spaces) |
(→Problem 3) |
||
(One intermediate revision by one other user not shown) | |||
Line 9: | Line 9: | ||
== Problem 2 == | == Problem 2 == | ||
− | Let <math>\ | + | Let <math>\text{A}, \text{B}, \Gamma</math> be consecutive points on a straight line <math>(\epsilon)</math>. We construct equilateral triangles <math>\text{AB}\Delta</math> and <math>\text{B}\Gamma\text{E}</math> to the same side of <math>(\epsilon)</math>. |
− | a) Prove that <math>\angle\ | + | a) Prove that <math>\angle \text{AEB} = \angle\Delta\Gamma\text{B}</math> |
b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that | b) If <math>x_{1}</math> is the distance of <math>A</math> form <math>\Gamma\Delta</math> and <math>x_{2}</math> is the distance of <math>\Gamma</math> form <math>\Alpha\Gamma</math> prove that | ||
Line 20: | Line 20: | ||
== Problem 3 == | == Problem 3 == | ||
− | If <math>\ | + | If <math>\alpha=\frac{1-\cos \theta}{\sin \theta}</math> and <math>\beta=\frac{1-sin\theta}{cos\theta}</math>, prove that |
− | <math>\frac{\ | + | <math>\frac{\alpha^2}{(1+\alpha^2)^2} + \frac{\beta^2}{(1+\beta^2)^2} = \frac{1}{4}</math>. |
[[2006 Cyprus Seniors Provincial/2nd grade/Problem 3|Solution]] | [[2006 Cyprus Seniors Provincial/2nd grade/Problem 3|Solution]] |
Latest revision as of 21:07, 10 April 2013
Problem 1
If with , prove that
i)
ii) .
Problem 2
Let be consecutive points on a straight line . We construct equilateral triangles and to the same side of .
a) Prove that
b) If is the distance of form and is the distance of form $\Alpha\Gamma$ (Error compiling LaTeX. Unknown error_msg) prove that
$\frac{x_{1}}{x_{2}} = \frac{Area(\Alpha\Gamma\Delta)}{Area(\Alpha\Gamma\Epsilon)} = \frac{\Alpha\Beta}{\Beta\Gamma}$ (Error compiling LaTeX. Unknown error_msg).
Problem 3
If and , prove that .
Problem 4
Find all integers pairs (x,y) that verify at the same time the inequalities and .