Difference between revisions of "2013 AIME II Problems/Problem 15"
m |
m (→Solution 2) |
||
Line 38: | Line 38: | ||
Thus, as <cmath>\begin{align*} \cos A\cos B-\sin A\sin B=\cos (A+B)=-\cos C ,\end{align*}</cmath> | Thus, as <cmath>\begin{align*} \cos A\cos B-\sin A\sin B=\cos (A+B)=-\cos C ,\end{align*}</cmath> | ||
− | we have <cmath>\begin{align*} \dfrac{15}{8}-2\cos^2 C +\cos^2 C=1 | + | we have <cmath>\begin{align*} \dfrac{15}{8}-2\cos^2 C +\cos^2 C=1, |
− | \end{align*}</cmath> | + | \end{align*}</cmath> so <math>\cos C</math> is <math>\sqrt{\dfrac{7}{8}}</math> and therefore <math> \sin C</math> is <math>\sqrt{\dfrac{1}{8}}</math>. |
Similarily, we have <math>\sin A =\dfrac{2}{3}</math> and <math>\cos A=\sqrt{\dfrac{14}{9}-1}=\sqrt{\dfrac{5}{9}}</math> and the rest of the solution proceeds as above. | Similarily, we have <math>\sin A =\dfrac{2}{3}</math> and <math>\cos A=\sqrt{\dfrac{14}{9}-1}=\sqrt{\dfrac{5}{9}}</math> and the rest of the solution proceeds as above. |
Revision as of 15:49, 6 April 2013
Problem 15
Let be angles of an acute triangle with There are positive integers , , , and for which where and are relatively prime and is not divisible by the square of any prime. Find .
Solutions
Solution 1
Let's draw the triangle. Since the problem only deals with angles, we can go ahead and set one of the sides to a convenient value. Let .
By the Law of Sines, we must have and .
Now let us analyze the given:
\begin{align*} \cos^2A + \cos^2B + 2\sinA\sinB\cosC &= 1-\sin^2A + 1-\sin^2B + 2\sinA\sinB\cosC \\ &= 2-(\sin^2A + \sin^2B - 2\sinA\sinB\cosC) \end{align*} (Error compiling LaTeX. Unknown error_msg)
Now we can use the Law of Cosines to simplify this:
Therefore: Similarly, Note that the desired value is equivalent to , which is . All that remains is to use the sine addition formula and, after a few minor computations, we obtain a result of . Thus, the answer is .
Solution 2
Let us use the identity .
Add to both sides of the first given equation.
Thus, as
we have so is and therefore is .
Similarily, we have and and the rest of the solution proceeds as above.
See Also
2013 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |