Difference between revisions of "2013 AIME II Problems/Problem 4"
(→Solution) |
Mapletree14 (talk | contribs) |
||
Line 1: | Line 1: | ||
In the Cartesian plane let <math>A = (1,0)</math> and <math>B = \left( 2, 2\sqrt{3} \right)</math>. Equilateral triangle <math>ABC</math> is constructed so that <math>C</math> lies in the first quadrant. Let <math>P=(x,y)</math> be the center of <math>\triangle ABC</math>. Then <math>x \cdot y</math> can be written as <math>\tfrac{p\sqrt{q}}{r}</math>, where <math>p</math> and <math>r</math> are relatively prime positive integers and <math>q</math> is an integer that is not divisible by the square of any prime. Find <math>p+q+r</math>. | In the Cartesian plane let <math>A = (1,0)</math> and <math>B = \left( 2, 2\sqrt{3} \right)</math>. Equilateral triangle <math>ABC</math> is constructed so that <math>C</math> lies in the first quadrant. Let <math>P=(x,y)</math> be the center of <math>\triangle ABC</math>. Then <math>x \cdot y</math> can be written as <math>\tfrac{p\sqrt{q}}{r}</math>, where <math>p</math> and <math>r</math> are relatively prime positive integers and <math>q</math> is an integer that is not divisible by the square of any prime. Find <math>p+q+r</math>. | ||
− | ==Solution== | + | ==Solution 1 == |
− | The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M = (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the | + | The distance from point <math>A</math> to point <math>B</math> is <math> \sqrt{13}</math>. The vector that starts at point A and ends at point B is given by <math>B - A = (1, 2\sqrt{3})</math>. Since the center of an equilateral triangle, <math>P</math>, is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to <math>\overline{AB}</math>. The line perpendicular to <math>\overline{AB}</math> through the midpoint, <math>M = (\dfrac{3}{2},\sqrt{3})</math>, <math>\overline{AB}</math> can be parameterized by <math> (\dfrac{2\sqrt{3}}{\sqrt{13}}, \dfrac{-1}{\sqrt{13}}) t + (\dfrac{3}{2},\sqrt{3})</math>. At this point, it is useful to note that <math>\Delta BMP</math> is a 30-60-90 triangle with <math>\overline{MB}</math> measuring <math>\dfrac{\sqrt{13}}{2}</math>. This yields the length of <math>\overline{MP}</math> to be <math>\dfrac{\sqrt{13}}{2\sqrt{3}}</math>. Therefore, <math>P =( \dfrac{2\sqrt{3}}{\sqrt{13}},\dfrac{-1}{\sqrt{13}})(\dfrac{\sqrt{13}}{2\sqrt{3}}) + (\dfrac{3}{2},\sqrt{3}) = (\dfrac{5}{2}, \dfrac{5}{2\sqrt{3}})</math>. Therefore <math>xy = \dfrac{25\sqrt{3}}{12}</math> yielding an answer of <math> p + q + r = 25 + 3 + 12 = \boxed{040}</math>. |
+ | |||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Rather than considering the Cartesian plane, we use complex numbers. Thus A is 1 and B is <math>2 + 2\sqrt{3}i</math>. | ||
+ | |||
+ | Recall that a rotation of <math>\theta</math> radians counterclockwise is equivalent to multiplying a complex number by <math>e^{i\theta}</math>, but here we require a clockwise rotation, so we multiply by <math>e^{-\frac{i\pi}{3}}</math> to obtain C. Upon averaging the coordinates of A, B, and C, we obtain the coordinates of P, viz. <math>\left(\frac{5}{2}, \frac{5\sqrt{3}}{6}\right)</math>. | ||
+ | |||
+ | Therefore <math>xy</math> is <math>\frac{25\sqrt{3}}{12}</math> and the answer is <math>25 + 12 + 3 = \boxed{040}</math>. |
Revision as of 18:10, 4 April 2013
In the Cartesian plane let and . Equilateral triangle is constructed so that lies in the first quadrant. Let be the center of . Then can be written as , where and are relatively prime positive integers and is an integer that is not divisible by the square of any prime. Find .
Solution 1
The distance from point to point is . The vector that starts at point A and ends at point B is given by . Since the center of an equilateral triangle, , is also the intersection of the perpendicular bisectors of the sides of the triangle, we need first find the equation for the perpendicular bisector to . The line perpendicular to through the midpoint, , can be parameterized by . At this point, it is useful to note that is a 30-60-90 triangle with measuring . This yields the length of to be . Therefore, . Therefore yielding an answer of .
Solution 2
Rather than considering the Cartesian plane, we use complex numbers. Thus A is 1 and B is .
Recall that a rotation of radians counterclockwise is equivalent to multiplying a complex number by , but here we require a clockwise rotation, so we multiply by to obtain C. Upon averaging the coordinates of A, B, and C, we obtain the coordinates of P, viz. .
Therefore is and the answer is .