Difference between revisions of "2013 AMC 12B Problems/Problem 23"

(Created page with "==Problem== Bernardo chooses a three-digit positive integer <math>N</math> and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers...")
 
Line 3: Line 3:
  
 
<math> \textbf{(A)}\ 5\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 15\qquad\textbf{(D}}\ 20\qquad\textbf{(E)}\ 25 </math>
 
<math> \textbf{(A)}\ 5\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 15\qquad\textbf{(D}}\ 20\qquad\textbf{(E)}\ 25 </math>
 +
 +
==Solution==
 +
 +
== See also ==
 +
{{AMC12 box|year=2013|ab=B|num-b=22|num-a=24}}

Revision as of 17:16, 22 February 2013

Problem

Bernardo chooses a three-digit positive integer $N$ and writes both its base-5 and base-6 representations on a blackboard. Later LeRoy sees the two numbers Bernardo has written. Treating the two numbers as base-10 integers, he adds them to obtain an integer $S$. For example, if $N=749$, Bernardo writes the numbers 10,444 and 3,245, and LeRoy obtains the sum $S=13,689$. For how many choices of $N$ are the two rightmost digits of $S$, in order, the same as those of $2N$?

$\textbf{(A)}\ 5\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 15\qquad\textbf{(D}}\ 20\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. Unknown error_msg)

Solution

See also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions