Difference between revisions of "2013 AMC 10A Problems/Problem 1"

Line 1: Line 1:
A taxi ride costs <math>1.50</math> plus <math>0.25</math> per mile traveled.  How much does a 5-mile taxi ride cost?
+
==Problem==
  
 +
A taxi ride costs &#036;1.50 plus &#036;0.25 per mile traveled.  How much does a 5-mile taxi ride cost?
  
 +
<math> \textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75 </math>
  
  
  
 +
==Solution==
  
 
+
There are five miles which need to be traveled. The cost of these five miles is <math>(0.25\cdot5) = 1.25</math>.   Adding this to <math>1.50</math>, we get &#036;2.75, <math>\textbf{(C)}</math>.
 
 
 
 
 
 
 
 
There are five miles which need to be traveled. In the problem, it states that each ride costs <math>1.50</math> plus <math>0.25</math> per mile. Since you need to travel <math>5</math> miles, the answer is simply:
 
 
 
<math>1.50</math>+<math>(0.25\cdot5)</math>
 
 
 
This equals <math>2.75</math>, D.
 

Revision as of 18:40, 7 February 2013

Problem

A taxi ride costs $1.50 plus $0.25 per mile traveled. How much does a 5-mile taxi ride cost?

$\textbf{(A)}\ 2.25 \qquad\textbf{(B)}\ 2.50  \qquad\textbf{(C)}\ 2.75 \qquad\textbf{(D)}\ 3.00 \qquad\textbf{(E)}\ 3.75$


Solution

There are five miles which need to be traveled. The cost of these five miles is $(0.25\cdot5) = 1.25$. Adding this to $1.50$, we get $2.75, $\textbf{(C)}$.