Difference between revisions of "2003 AMC 8 Problems/Problem 19"
(→Solution) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | How many integers between 1000 and 2000 have all three of the numbers 15, 20, and 25 as factors? | ||
+ | |||
+ | <math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math> | ||
+ | |||
==Solution== | ==Solution== | ||
− | Find the least common multiple of <math>15, 20, 25</math> by turning the numbers into their prime factorization. < | + | Find the least common multiple of <math>15, 20, 25</math> by turning the numbers into their prime factorization. <cmath>15 = 3 * 5, 20 = 2^2 * 5, 25 = 5^2</cmath> Gather all necessary multiples |
− | <math>3, 2^2, 5^2</math> when multiplied gets <math>300</math>. The multiples of <math>300 - 300, 600, 900, 1200, 1500, 1800, 2100</math> | + | <math>3, 2^2, 5^2</math> when multiplied gets <math>300</math>. The multiples of <math>300 - 300, 600, 900, 1200, 1500, 1800, 2100</math>. The number of multiples between 1000 and 2000 is <math>\boxed{\textbf{(C)}\ 3}</math>. |
− | |||
− | <math>\boxed{\textbf{(C)}\ 3}</math> | ||
+ | ==See Also== | ||
{{AMC8 box|year=2003|num-b=18|num-a=20}} | {{AMC8 box|year=2003|num-b=18|num-a=20}} |
Revision as of 03:07, 24 December 2012
Problem
How many integers between 1000 and 2000 have all three of the numbers 15, 20, and 25 as factors?
Solution
Find the least common multiple of by turning the numbers into their prime factorization. Gather all necessary multiples when multiplied gets . The multiples of . The number of multiples between 1000 and 2000 is .
See Also
2003 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |