Difference between revisions of "User talk:Baijiangchen"

(Created page with "If: <math>W(0):=1</math> <math>W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1})</math> Then: W(n)=(2n-1)!!")
 
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
If:
 
If:
 +
 
<math>W(0):=1</math>
 
<math>W(0):=1</math>
<math>W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1})</math>
+
 
 +
<math>W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1}))</math>
  
 
Then:
 
Then:
W(n)=(2n-1)!!
+
 
 +
<math>W(n)=(2n-1)!!</math>
 +
 
 +
==Sam's stuff==
 +
Let <math>W(n)=\sum_{k=1}^{n}(\binom{x-1}{k-1}W(k-1)(n-k)!(2^{n-k}))</math>
 +
 
 +
Assume that for some integer <math>x</math>, <math>W(x)=(2x-1)!!</math>. We intend to show that <math>W(x+1)=(2(x+1)-1)!!=(2x+1)!!</math>.
 +
 
 +
<math>W(x+1)=\sum_{k=1}^{x+1}(\binom{x}{k-1}W(k-1)(x-k+1)!(2^{x-k+1}))</math>
 +
 
 +
<math>=\sum_{k=1}^{x}(\binom{x-1}{k-1}(\frac{x}{x-k+1})W(k-1)(x-k)!(x-k+1)(2^{x-k})(2))+\binom{x}{x}W(x)(0)!(2^{0})</math>
 +
 
 +
<math>=2x\sum_{k=1}^{x}(\binom{x-1}{k-1}W(k-1)(x-k)!(2^{x-k}))+W(x)</math>
 +
 
 +
<math>=2x(2x-1)!!+(2x-1)!!=(2x-1)!!(2x+1)=(2x+1)!!</math>
 +
 
 +
Q.E.D.

Latest revision as of 21:23, 22 July 2012

If:

$W(0):=1$

$W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1}))$

Then:

$W(n)=(2n-1)!!$

Sam's stuff

Let $W(n)=\sum_{k=1}^{n}(\binom{x-1}{k-1}W(k-1)(n-k)!(2^{n-k}))$

Assume that for some integer $x$, $W(x)=(2x-1)!!$. We intend to show that $W(x+1)=(2(x+1)-1)!!=(2x+1)!!$.

$W(x+1)=\sum_{k=1}^{x+1}(\binom{x}{k-1}W(k-1)(x-k+1)!(2^{x-k+1}))$

$=\sum_{k=1}^{x}(\binom{x-1}{k-1}(\frac{x}{x-k+1})W(k-1)(x-k)!(x-k+1)(2^{x-k})(2))+\binom{x}{x}W(x)(0)!(2^{0})$

$=2x\sum_{k=1}^{x}(\binom{x-1}{k-1}W(k-1)(x-k)!(2^{x-k}))+W(x)$

$=2x(2x-1)!!+(2x-1)!!=(2x-1)!!(2x+1)=(2x+1)!!$

Q.E.D.